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Abstract

Latent feature models have become a keystone in the Bayesian nonparametrics

community following the proposal of the Indian Buffet Process (IBP) [Griffiths

and Ghahramani, 2006]: a stochastic process that describes a rich-get-richer prob-

ability on unbounded feature allocations. Inference for latent feature models is

inherently difficult as the inference space grows exponentially with the size of the

input data and number of latent features. This thesis shows a novel connection

between inference with nonparametric latent feature models and submodular op-

timization. Specifically, this thesis shows that the log of the IBP distribution is

submodular for each observation’s feature assignments. As a result, we show that

approximate MAP inference for a certain class of latent feature models can be

phrased as a sequence of submodular maximization problems via a coordinate as-

cent framework. We further show how the maximization-expectation framework

from Kurihara and Welling [2008] can be used in conjunction with our submod-

ularity results to perform approximate MAP inference for latent feature models.

The submodularity property enables the use of scalable maximization algo-

rithms that provide optimality guarantees when determining the MAP estimate

for each observation’s feature assignment. We focus our experiments and explo-

ration on a nonnegative linear-Gaussian IBP model and outline how our results

can be applied to other models. For the nonnegative linear-Gaussian model, we

find that the submodular MAP framework scales linearly with the size of the

input data, converges faster than sampling and variational techniques, and per-

forms comparable in terms of predictive likelihood and L2 error on a range of

datasets. Furthermore, we show that the MAP results can be used to initialize

sampling-based inference methods that perform better and converge to the target

distribution faster than a random initialization.
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Chapter 1

Introduction

A data analyst—whether a biologist, physicist, statistician, or economist—makes

assumptions about the data he observes in order to formalize a statistical analysis

and interpret the results. For instance, a botanist may measure the petal width

of one hundred flowers he collected in a field near his lab. The botanist could as-

sume the field contains three distinct types of flowers, each of which has a distinct

mean petal width and variance. By making these assumptions, the botanist can

then formalize a statistical procedure to perform inference and test his hypoth-

esis. These assumptions appear in both Bayesian and frequentist analyses and

introduce human subjectivity into the analysis. Generally, the more assumptions

an analyst makes about the data, the easier it is to perform inference. The trade-

off, however, is that increasing the number of assumptions increases the human

subjectivity present in the analysis, and if the injected subjectivity is incorrect,

then our inference and understanding of the data could also be incorrect.

Nonparametric statistics attempts to reduce the degree of subjectivity needed

to perform statistical inference. In classical terms, nonparametric statistics typi-

cally circumvents parametric assumptions by avoiding a complete specification

of the likelihood, p(X|θ) for some observations X and model parameters θ,

see Wasserman [2006].1 Bayesian nonparametric statistics also aims to reduce

the degree of subjectivity needed for analysis while maintaining the well-defined

Bayesian calculus for explicitly updating our assumptions based upon observed

1An alternate definition of “nonparametric statistics” focuses on the related concept of
distribution-free tests, which is not the focus here.
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data. Specifically, given a likelihood p(X|θ) and prior p(θ), we update our pos-

terior beliefs using Bayes’ Rule:

p(θ|X) =
p(X|θ)p(θ)
p(X)

. (1.1)

Unlike frequentist nonparametrics, however, Bayesian nonparametrics requires

full specification of the model likelihood, p(X|θ) in order to update our beliefs.

It is through the prior specification, p(θ), that we define our Bayesian analysis as

“nonparametric.” Namely, θ is viewed as an infinite dimensional parameter and

p(θ) places positive support over this space, which is equivalent to specifying θ

as a stochastic process. Different specifications of p(θ) yield different Bayesian

nonparametric models with different characteristics, interpretations and posterior

updates.

Returning to our botanist example, suppose the botanist returns to the same

field year after year in order to collect additional flower samples. Would it be valid

for the botanist to assume that there are exactly three types of flowers that will

ever grow in this field? Probably not. What, then, should the botanist assume?

Five? Ten? Twenty? In the Bayesian nonparametric formalism, the botanist can

treat the number of flower types as a random, unbounded quantity and incorpo-

rate relatively vague assumptions via a nonparametric prior, e.g. observing three

flower types is probable, observing one hundred flower types is less probable, and

observing ten million flower types is virtually impossible.

In Bayesian modeling, it is common to model observed data as arising from

unobserved (latent) categorical factors, e.g. our botanist models the observed

petal width as arising from the latent flower type. The Dirichlet process [Fergu-

son, 1973] is the most widely used and studied Bayesian nonparametric prior for

so called clustering or partitioning models, where each observed datum is associ-

ated with a single underlying factor. In other words, given N observations, e.g.

{1, . . . , 6}, a partitioning model places the observations into K mutually exclusive

and jointly exhaustive sets called blocks, e.g. {{2, 6}, {1, 3, 5}, {4}}, where K is

unbounded when using the Dirichlet process. The Dirichlet process can be used

to define a distribution on the infinite-dimensional space of discrete distributions

(or atomic probability measures), where the discrete states are usually interpreted
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as the partition assignments. By sampling from the draw of a Dirichlet process,

we obtain random partition labels that are exchangeable. So by specifying this

generative process, we have defined a distribution on random partitions. An

equivalent way of obtaining this distribution is to specify the predictive process

for assigning an observation to a specific block, and then deriving the probability

associated with any given partition. For the Dirichlet process, the predictive pro-

cess is known as the Chinese Restaurant Process (CRP) [Aldous, 1985] and can

be used to interpret the properties of the probability distribution derived from

the Dirichlet process. See Broderick et al. [2012] for a detailed discussion.

The constraint that each observation can result from a single underlying fac-

tor is limiting: perhaps the petal widths that our botanist measured were also

influenced by whether the flower was pollinated, whether there was a drought,

whether the flower grew under a tree, etc. Assuming K such binary factors, it

would take 2K partitions to express all possible combinations of these factors,

many of which would have overlap: (grew under tree), (grew under tree and

picked during a drought), (grew under a tree and picked during a drought and

was pollinated), etc. Of course, we could use probabilistic partitioning with only

K sets rather than binary (hard) partitioning with 2K set, but this has the pos-

sibly undesirable characteristic that belonging to one set with high probability is

negatively correlated with belonging to any other set, e.g. a high probability of

the flower being collected during a drought decreases the probability that it grew

under a tree.

Extending the idea of a partition model such that observations arise from

the interactions of multiple factors results in a multiple-membership or feature

allocation model. Here, given N observations, e.g. {1, . . . , 6}, a feature allo-

cation model allows each observation to exist in any number of K sets, e.g.

{{2, 6}, {2, 5, 6}, {6}, {6}}. Each observation can have any combination of fea-

tures or no features at all, yielding 2K possible feature assignments for each

observation. Note that every partition is a feature allocation but the converse

does not hold. In this sense, a feature allocation is a generalization of a partition.

The most widely used and studied Bayesian nonparametric prior for feature

allocation models is the beta process [Griffiths and Ghahramani, 2006; Hjort,

1990; Thibaux and Jordan, 2007]. The beta process can be used to specify a
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distribution on the infinite-dimensional space of discrete measures, where the

discrete states are interpreted as binary features. Note the key difference be-

tween the Dirichlet process and the beta process: the Dirichlet process is defined

over discrete distributions (which must integrate to unity), while the beta process

is defined over discrete measures and has no integration constraints. In turn, as-

signing more probability mass to a given discrete state with the beta process does

not remove probability mass from the other states. By sampling from a Bernoulli

process with a beta process as its base measure, we obtain exchangeable random

feature allocations, which are explained in §2.2. Like the Dirichlet process, the

probability distribution on feature allocations obtained from this generative pro-

cess can also be obtained from a predictive process known as the Indian Buffet

Process (IBP). See Broderick et al. [2012] for a detailed discussion.

While feature allocation models can be more expressive than partition mod-

els, the size of the inference space for a binary feature allocation model with K

features is exponentially larger than a partition model with K sets. That is, each

observation can take 2K different assignments yielding 2NK different feature mod-

els for N observations. Inference then involves inferring the posterior distribution

over this exponentially large space. Furthermore, when using a nonparametric

prior, we must simultaneously infer the number of latent features K. When using

a beta process, K is finite with probability one for finite datasets [Thibaux and

Jordan, 2007]. But for practical computation purposes, the number of possible

states, 2NK for some fixed N and finite but variable K, is effectively infinite.

Most nonparametric feature allocation models use Markov Chain Monte Carlo

(MCMC) sampling [Robert and Casella, 2004] to infer various parameters of in-

terest, i.e. the latent feature assignments. The massively combinatorial size of the

inference space often leads to slowly converging samplers that experience difficulty

overcoming local optima in the posterior state space [Doshi-Velez et al., 2009b].

A substantial research effort has attempted to overcome this problem through

collapsed sampling techniques, particle filters, variational methods, and approx-

imate Maximum A Posteriori (MAP) techniques for feature allocation models,

c.f. §4.8. Nevertheless, modern nonparametric feature allocation models are still

largely limited to operating with small datasets, see e.g. Palla et al. [2012].

In this thesis, we show a new approach for performing approximate inference
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with a certain class of nonparametric feature allocation models. Specifically, we

show that the log of the distribution defined by the IBP is submodular for each ob-

servation’s feature assignments. Submodularity is a property of set functions that

enables the use of scalable (i.e. greedy) algorithms that obtain constant-factor

optimality guarantees on NP-hard combinatorial optimization problems, such as

determining optimal feature assignments. As a result, we show that approximate

MAP inference for a certain class of feature allocation models can be phrased as

a sequence of submodular maximization problems via a coordinate-ascent frame-

work. We empirically show that this framework allows feature allocation models

to be applied to the largest datasets to date for a linear-Gaussian feature alloca-

tion model. Furthermore when used as an initialization for sampling techniques,

the sampler outperforms all other inference techniques for linear-Gaussian fea-

ture allocation models on a range of diverse datasets. Finally, we outline how

the submodular MAP inference technique can be applied to a number of feature

allocation models.

1.1 Thesis Guide

Here we provide a bief summary of this thesis. Note that a subset of the work

presented in this thesis was first presented in Reed and Ghahramani [2013].

• Chapter 2 provides the background material needed to understand the tech-

nical contributions of this thesis.

• In Chapter 3, we prove that the distribution defined by the IBP is log-

submodular for each observation’s feature assignments; we also show this

property holds for the parametric analogue to the IBP.

• In Chapter 4, we show how the submodularity results of Chapter 2 in con-

junction with the maximization-expectation framework from Kurihara and

Welling [2008] can be used to perform approximate MAP inference with

a nonnegative linear-Gaussian IBP model. This chapter provides detailed

experimental sections that empirically characterizes our inference method-

ology.
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• In Chapter 5, we outline how the submodularity property from Chapter 3

can be used for sparse matrix factorization models (a generalization of the

model used in Chapter 4), models for network data, and models for general

binary data.

• Chapter 6 provides a summary of the contributions of this thesis and poses

a number directions for future research.

1.2 Notation

This section provides a reference list of nomenclature used in this thesis. Gener-

ally, we use the following conventions: boldface variables are matrices with (row,

column) subscripts, a dot in the subscript indicates all elements of given dimen-

sion, and lowercase variables are scalars. A lowercase non-boldface variable with

the same letter is used for the elements of a matrix, e.g. for matrix M the (i, j)

element is mij.

X: observed random variables

Z: latent random variables of a probabilistic model

A: latent model parameters of a probabilistic model

θ ∈ Θ: represents arbitrary parameters of a probabilistic model from some

parameter space Θ

q(·): represents a variational distribution

[N ] represents the set of natural numbers up to N : {1, 2, . . . , N}



Chapter 2

Background

In this chapter, we provide background material needed to understand the core

contributions of this thesis. This chapter is self-contained but was not intended

to be a tutorial for those completely unfamiliar with these topics. Therefore,

at the end of each section we provide a list of tutorial-oriented resources on the

specified subject.

2.1 Exchangeability

Exchangeability is a fundamental concept in Bayesian statistics that underlies

virtually all Bayesian models [Orbanz and Roy, 2013]. Loosely stated, exchange-

ability is a specific assumption that can be made about data in order to for-

mulate a statistical model and perform inference. Exchangeability encodes the

assumption that the probability structure used to describe the data is invariant

to permutations of some component of the data. For instance, an exchangeable

sequence is an infinite sequence of random variables that satisfy

p(X1, X2, . . .) = p(Xπ(1), Xπ(2), . . .) (2.1)

where π is a permutation of N = {1, 2, . . .} and Xi, i ∈ N is an infinite sequence

of random variables. In other words, we can shift around the order in which

we observe the sequence without affecting the probability distribution for the

sequence. This is equivalent to saying that a permutation of the random variables



2.2 Feature Allocations 8

are equal in distribution.

de Finetti’s theorem states that an exchangeable sequence of random variables

is a mixture of i.i.d. samples:

p(X1, X1, . . .) =

∫ ∞∏
i

Qθ(Xi)ν(dθ) (2.2)

where Qθ, for some random variable θ ∈ Θ, represents a family of conditional

distributions, and ν is the distribution of Θ; ν is commonly referred to as the de

Finetti mixing measure. By assuming exchangeability, de Finetti’s theorem pro-

vides a framework for probabilistic modeling, where generally, we can let Θ be the

space of measures and ν be some distribution over these measures. This structure

leads to several useful nonparametric models. For instance, if we let Qθ be some

discrete probability distribution and ν be the Dirichlet process, then we obtain

a nonparametric distribution of exchangeable partitions (clusters) described by

the Chinese Restaurant Process, see Aldous [1985]. Exchangeability is present

for all probabilistic models where some set of random variables are conditionally

independent given some latent random variable, e.g. hierarchical models.

Throughout this thesis, we focus on a nonparametric distribution over ex-

changeable feature allocations described by a stochastic process known as the

Indian Buffet Process (discussed below). Though not explicitly relevant for the

contributions of this thesis, for completeness we note that the distribution de-

scribed by the Indian Buffet Process can be obtained by integrating over a beta

process de Finetti mixing measure with a Bernoulli process conditional distribu-

tion, see Thibaux and Jordan [2007] for details.

Learning resources: Foti and Williamson [2012], Orbanz and Roy [2013], and

§4.2 of Bernardo and Smith [2009].

2.2 Feature Allocations

In this section, we introduce feature allocations and discuss them in the context

of latent feature models that use an exchangeable nonparametric prior known as

the Indian Buffet Process (IBP). This introduction to feature allocations follows
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Broderick et al. [2013b] and Griffiths and Ghahramani [2011].

Given a set of integers [N ] := {1, . . . , N}, a feature allocation, denoted fN is

a set of subsets of [N ] where each element occurs in a finite number of subsets,

termed features. For instance f[3] = {{2, 3}, {3}, {}, {2}, {2}} is a feature allo-

cation where the first feature is {2, 3}. Notice that each element can occur in

multiple features or zero features (element 1 does not occur in any features), and

a feature itself can be an empty set. We denote an arbitrary feature by Ai, where

in the above example A2 = {3}. The integer elements that occupy the features

are typically viewed as indices of observed data.

In this thesis, we are interested in nonparametric distributions on exchange-

able feature allocations. From Broderick et al. [2013b]: let FN represent the space

of all feature allocations for [N ] and let FN be a random element (a “random fea-

ture allocation”) from FN . A random feature allocation is exchangeable if and

only if FN is equal in distribution to a permutation of the elements of the features.

In other words, the probability distribution on the random feature allocation only

depends on the number of elements in each feature: the particular elements within

the feature do not matter. Mathematically, FN
d
= σ(FN), which states that FN

is equal in distribution to a permutation of the elements, where σ(FN) applies a

permutation to the elements of each feature: σ(FN) = {σ(A) : A ∈ FN} where

σ(A) = {σ(i) : i ∈ A}.
The set representation of feature allocations provides a succinct and general

representation for discussing feature allocations. Computationally, however, it is

often beneficial to view feature allocations as binary matrices. Given a feature

allocation, fN , with K features, the binary matrix representation of fN is an

N×K matrix where the element in row n and column k is one if n ∈ Ak. A central

difference between the set representation and the binary matrix representation

is that the matrix representation implicitly includes an ordering of the features,

which corresponds to a labeling of the features in the set representation. As

Broderick et al. [2013b] noted, one must take care when defining this ordering as

it is possible to violate the exchangeability of the features.

The IBP is a stochastic process that describes a nonparametric prior on ex-

changeable feature allocations. Griffiths and Ghahramani [2006] derived the dis-

tribution described by the IBP by placing independent beta priors on Bernoulli
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generated entries of an N×K binary matrixZ, marginalizing over the beta priors,

and letting the number of features, K, go to infinity. Formally, the parametric

generative model for Z is

πk|α, β ∼ beta(
αβ

K
, β) (2.3)

znk|πk ∼ Bernoulli(πk). (2.4)

The beta distribution is conjugate to the Bernoulli, so integrating over all values

of πk can be done analytically yielding [Ghahramani et al., 2007]:

P (Z|α, β) =
K∏
k=1

Γ(mk + αβ
K

)Γ(N −mk + β)Γ(αβ
K

+ β)

Γ(N + αβ
K

+ β)Γ(αβ
K

)Γ(β)
(2.5)

where mk =
∑N

i=1 Znk and Γ(·) is the gamma function. This is the two-parameter

variant of the IBP (specified by parameters α and β); the original IBP derivation

focused on the single parameter IBP, which sets β = 1. In taking the infinite

limit K →∞, however, P (Z) is zero for any particular Z. Griffiths and Ghahra-

mani [2006] therefore took the limit of an equivalence classes of binary matrices,

[Z]lof, defined by the “left-order form” (lof) ordering of the columns and show

that P ([Z]lof) has a non-zero probability as K goes to infinity. The lof ordering

arranges the columns of Z such that the binary values of the columns are non-

increasing, where the first row is the most significant bit, see Figure 2.1. The lof

equivalence classes correspond to choosing an equivalent lof labeling scheme in

the set representation for feature allocations. By using the lof equivalence class,

a combinatorial factor of

K!∏2N−1
h=0 Kh!

(2.6)

is introduced into Eq. 2.5 to account for the multiplicity of the equivalence class,

where Kh represents the number of distinct features with binary representation

h: to obtain h for a given feature, each feature is represented as a binary vector of

length N where the elements within the feature are set to 1 and all other elements

are zero, and the first index of the vector is the most significant bit. We refer to
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lof−→

Figure 2.1: Example of a binary matrix (left) and its lof equivalence matrix
(dark squares are 1, white squares are 0)—the columns are ordered by their non-
increasing binary representation, where the first row is the most significant bit.

the binary representations of a unique feature as a “history.” The combinatorial

term from the equivalence class causes the probability of the equivalence class

to remain well-defined and non-trivial as K → ∞. The distribution for a lof

equivalence class in the infinite limit is given by [Ghahramani et al., 2007]:

P ([Z]lof|α, β) =
(αβ)K+∏2N−1
h=1 Kh!

e−α
∑N
i=1

β
β+i−1

K∏
k=1

Γ(mk)Γ(N −mk + β)

Γ(N + β)
, (2.7)

where K+ is the number of columns with at least one non-zero entry—referred

to as “active features.” The IBP takes its name from a recursive culinary metaphor

used to describe its predictive rule, and in turn, specify its distribution, Eq. 2.7.1

The culinary metaphor is as follows:

1. The first customer (data index) enters an Indian restaurant and selects

Poisson(α) dishes (feature labels) from a buffet

2. The nth customer (n > 1) chooses each of the previously selected dishes

from the 1, . . . , n− 1 customers with probability

mn−1,k

β + n− 1
(2.8)

1 As alluded to previously, it is also possible to obtain the IBP distribution by integrating
over a Bernoulli process likelihood with a beta process de Finetti mixing measure. There
are many equivalent techniques to derive the IBP probability distribution, see Griffiths and
Ghahramani [2011].
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and then samples a number of new features according to:

Poisson

(
αβ

β + n− 1

)
, (2.9)

α is a mass parameter and β is a concentration parameter. This process is not

exchangeable, and the probability obtained from its specification is not equivalent

to Eq. 2.7; however, exchangeability is restored by examining the probability of

the lof equivalence class of Z.

The feature ordering scheme, or labeling scheme, for a feature allocation de-

fines the equivalence class of the corresponding binary matrix. One computation-

ally convenient alternative to the lof equivalence class is the “shifted” equivalence

class first conjectured by Ding et al. [2010], shown to be the result of a uniformly

random feature labeling scheme of observed features by Broderick et al. [2013b],

and shown to be a valid equivalence class by Reed and Ghahramani [2013]. For a

given N ×K binary matrix Z, the equivalence class [Z]shift is obtained by shift-

ing all-zero columns to the right of the non-zero columns while maintaining the

non-zero column orderings, see Figure 2.2. This equivalence class multiplies the

parametric feature probability, Eq. 2.5, by a combinatorial factor of
(

K

K+

)
to ac-

count for the multiplicity of the equivalence class. Similar to the lof equivalence

class, this combinatorial term causes the probability of the shifted equivalence

class to remain well-defined and non-trivial as K → ∞. The probability for a

shifted equivalence class in the infinite limit is [Reed and Ghahramani, 2013]:

P ([Z]shift|α, β) =
(αβ)K+

K+!
e−α

∑N
i=1

β
β+i−1

K∏
k=1

Γ(mk)Γ(N −mk + β)

Γ(N + β)
. (2.10)

Where the only difference from the lof probability is that the histories term(∏2N−1
h=1 Kh!

)−1

has been replaced with a K+!−1 factor. For the lof, this factor

penalizesZ matrices with identical columns. In the feature allocation perspective,

this term penalizes features that are assigned to the exact same set of observa-

tions. The K+! term in the shifted equivalence class does not distinguish between

identical and distinct columns of Z, and in turn, does not penalize repeated fea-

ture assignments. In practice, it is difficult to engineer an inference setting in
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shifted−−−→

Figure 2.2: Example of a binary matrix (left) and its shifted equivalence ma-
trix (dark squares are 1, white squares are 0)—placing the two all-zero columns
anywhere in the matrix will yield the same equivalence matrix.

which two features are identical, as features often have associated parameters,

i.e. model parameters, that distinguish the features even if they contain the same

indices. These two equivalence class probabilities are proportional in the limit of

large N as the probability of two columns being identical approaches 0.

Analytic inference for models with IBP components is intractable, so inference

is accomplished through approximation techniques such as Markov Chain Monte

Carlo (MCMC) sampling techniques. MCMC inference with IBP models is com-

putationally expensive as its discrete state space has 2NK+ possible assignments,

where K+ is unbounded but finite for finite datasets. In terms of computational

ability, the number of possible feature assignments for a given dataset is effec-

tively infinite, and as a result, samplers are often slow to converge and experience

difficulty overcoming local optima [Doshi-Velez et al., 2009b].

The IBP distribution has been used as a nonparametric feature allocation prior

for a range of applications such as: unbounded independent component analy-

sis models and factor analysis Knowles and Ghahramani [2007], nonparametric

models of human similarity judgements [Navarro and Griffiths, 2007], protein in-

teraction models [Krause and Wild, 2006], topic models [Williamson et al., 2010],

gene expression modeling [Knowles and Ghahramani, 2011], and network inter-

action models [Palla et al., 2012]. However, due to computational constraints, all

of the previously mentioned applications have been limited to small datasets. For

example, Palla et al. [2012] applied their network model to a coauthorship net-

work of only 234 authors, and Williamson et al. [2010] applied their topic model to

a corpus with 2000 documents and a vocabulary of 1472 words—typical network
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and topic modeling datasets are several orders of magnitude larger. Many au-

thors have addressed the problem of scaling inference with latent feature models

to larger datasets, we discuss this work in §4.8.

Learning resources: Broderick et al. [2013b] and Griffiths and Ghahramani

[2011] provide a complementary discussion on feature allocations.

2.3 Variational Inference

Inference for probabilistic models typically focuses on computing the posterior

distribution of latent random variables Z and model parametersA given observed

data X:

p(Z,A|X) =
p(X|A,Z)p(Z)p(A)

p(X)
. (2.11)

This computation is intractable for most probabilistic models of interest because

p(X) =

∫
Z,A

p(X,A,Z) (2.12)

is impossible to compute analytically. The central idea of variational inference

is to approximate the posterior distribution, p(Z,A|X), with a “variational dis-

tribution” q(Z,A) in order to perform an approximate posterior computation.

In variational inference, the variational distribution is chosen to minimize the

Kullback-Leibler (KL) divergence between the variational distribution and the

true posterior:

KL(q(Z,A)||p(Z,A|X)) = Eq
[
log

(
q(Z,A)

p(Z,A|X)

)]
(2.13)

where the expectation is computed with respect to the variational distribution.

The KL-divergence is strictly nonnegative, implying that the global minimum

(zero) can be obtained by setting q(Z,A) = p(Z,A|X). Of course, determin-

ing the globally minimizing distribution returns us to our original problem of

determining the posterior distribution, which is intractable. Therefore, we re-
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strict q(Z,A) to a class of simpler distributions and find the distribution in this

restricted class that minimizes the KL-divergence to the true posterior.

In Mean-Field Variational Bayes (MFVB) [Attias, 2000; Ghahramani and

Beal, 2001], we restrict the distribution q(Z,A) to be factorized variational dis-

tributions:

q(Z,A) = q(Z)q(A). (2.14)

In this class of distributions, the latent random variables are independent and

have their own variational distributions. While this class of distributions is very

flexible (it can express any set of marginals of the latent random variables), it

rarely contains the true posterior [Wang and Blei, 2012b].

Directly finding the variational distributions that minimizes the KL-divergence

is difficult since we do not know the posterior distribution, i.e. the distribution

that we are approximating. So instead, we maximize an objective function L(q)

that is equivalent to minimizing the KL-divergence. Specifically, this objective

function is a lowerbound on the log of the marginal likelihood:

log (p(X)) = L(q) + KL(q(Z)q(A)||p(Z,A|X)) (2.15)

log (p(X)) ≥ L(q) (2.16)

where

L(q) = Eqlog

(
p(Z,A,X)

q(Z)q(A)

)
, (2.17)

which is commonly referred to as the evidence lower bound (ELBO). It follows

that L(q) is a lowerbound on p(X) because KL(q(Z)q(A)||p(Z,A|X)) ≥ 0.

Via the calculus of variations, it is straightforward to show that setting ∂L(q)/∂q =

0 leads to optimal variational distributions that satisfy [Bishop, 2006]:

qOPT(Z) ∝ exp
(
Eq(A) [log (p(X,Z,A))]

)
(2.18)

qOPT(A) ∝ exp
(
Eq(Z) [log (p(X,Z,A))]

)
. (2.19)

Note that qOPT(Z) depends on q(Z) and qOPT(A) depends on q(A), so it is
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generally not possible to directly compute the optimal variational distributions.

The optimization is therefore approximated via a coordinate ascent routine in

which q(Z) is optimized while q(A) is held fixed and then q(A) is optimized

while q(Z) is held fixed, etc. until the variational distributions converge. Under

the coordinate ascent routine, the variational distributions are guaranteed to

converge to a local optimum [Bishop, 2006].

Learning resources: Chapter 2 of Beal [2003]; Attias [2000].

2.4 Maximization-Expectation

Kurihara and Welling [2008] presented the ME algorithm: an inference algorithm

that exchanges the expectation and maximization variables in the expectation-

maximization (EM) algorithm [Dempster et al., 1977]. Consider a general prob-

abilistic model p(X,Z,A), where X are the observed random variables (RVs),

Z are the local latent RVs, and A are the global latent RVs. RVs are qualified

as “local” if there is one RV for each observation, and RVs are “global” if the

multiplicity of the parameters is constant or inferred from the data and are often

referred to as “model parameters.”

The EM algorithm can be viewed as a special case of MFVB that obtains

MAP values of the global RVs by letting

q(A) = δ(A−A∗), (2.20)

where δ(·) is the delta function and A∗ is the MAP assignment. The ME algo-

rithm instead maximizes the local RVs Z and computes the expectation over the

global RVs A, which can be viewed as MFVB with

q(Z) = δ(Z −Z∗). (2.21)

In the limit of large N , the ME algorithm recovers a Bayesian information cri-

terion regularization term [Kurihara and Welling, 2008]. Also, maintaining a

variational distribution over the global RVs retains the model selection ability of
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MFVB, while using point estimates of the local RVs allows the use of efficient

data structures and optimization techniques.

Learning resources: Kurihara and Welling [2008] provides a detailed discussion

of ME inference.

2.5 Submodularity

Submodularity is a property of set functions that makes optimization of the set

function tractable or approximable. Given ground set V and set function f :

2V → R, f is submodular if for all A ⊆ B ⊆ V and e ∈ V \B:

f(A ∪ {e})− f(A) ≥ f(B ∪ {e})− f(B), (2.22)

which expresses a “diminishing returns” property, where the incremental benefit

of element e diminishes as we include it in larger solution sets. Submodularity

is desirable in discrete optimization because submodular functions are discrete

analogues of convex functions and can be globally minimized in polynomial time

[Lovász, 1983]. However, global submodular maximization is NP-hard, but sub-

modularity often enables approximation bounds via greedy algorithms, cf. the

resources at the end of this section.

Throughout this thesis, we will refer to the following two well-known proper-

ties of submodular functions.

Theorem 1. Nonnegative linear combinations of submodular functions are sub-

modular.

Theorem 1 specifies one of the most useful properties of submodularity as it

allows us to form complicated submodular functions by combining simple sub-

modular functions. Theorem 1 is easily proven from the definition of submodular-

ity, Eq. 2.22. Given a composite submodular function r(A) =
∑

i αiti(A) where

each function ti is submodular and αi ≥ 0 for all i. For set A ⊆ B ⊆ V for base
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set V , submodularity yields∑
i

[αiti(A ∪ {e})− αiti(A)] ≥
∑
i

[αiti(B ∪ {e})− αiti(B)] (2.23)

where for an arbitrary but specific i we have

ti(A ∪ {e})− ti(A) ≥ ti(B ∪ {e})− ti(B) (2.24)

αiti(A ∪ {e})− αiti(A) ≥ αiti(B ∪ {e})− αiti(B), (2.25)

which is true since all ti are submodular and αi are nonnegative. It naturally

follows that r is submodular. �

The next important submodular property involves quadratic pseudo-Boolean

functions. A quadratic pseudo-Boolean function has the form

f(z) = zWzT + zωT + const (2.26)

where z is a 1×K binary vector, W is a K ×K quadratic weight matrix and ω

is a 1×K linear weight vector.

Theorem 2. A quadratic pseudo-Boolean function with quadratic weight matrix

W is submodular if and only if wij ≤ 0 for all i, j.

Theorem 2 is more esoteric than Theorem 1, but it is commonly cited in

computer vision applications, cf. Kolmogorov and Rother [2007]. Its proof is

simple: let g(A), A = {i : zi = 1} be the equivalent set function:

f(z) = g(A) =
∑
i∈A

∑
j∈A

wij +
∑
i∈A

ωi + const. (2.27)
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and for A ⊆ B ⊆ [K] and element e ∈ [K] \B submodularity yields,∑
j∈A

wej + ωe ≥
∑
j∈B

wej + ωe (2.28)∑
j∈A

wej ≥
∑
j∈B

wej (2.29)

−
∑
j∈B\A

wej ≥ 0 (2.30)

which is true for all A ⊆ B ⊆ V = {1, . . . , K+} and elements e ∈ V \B, proving

the sufficiency of Theorem 2. The necessity of Theorem 2 is easily proven by

contradiction: if any arbitrary but specific element wrs in W was negative, then

the inequality given in Eq. 2.30 would not hold when r ∈ [K]\B and {s} ≡ B\A.

�

Learning resources: Krause and Golovin [2012] and Chapter 5 of Krause [2008].



Chapter 3

Log-Submodular Feature

Allocation Priors

In this chapter, we show that two forms of the IBP distribution and a paramet-

ric analogue (a finite beta-Bernoulli distribution) are log-submodular for each

observation’s feature assignment conditioned on the other observations’ feature

assignments. This implies that we can formulate approximate MAP inference for

feature models as a sequence of submodular maximizations when all distributions,

e.g. the likelihood, are also log-submodular as a function of each observation’s

feature assignment. We encapsulate the results of this chapter in the following

theorems:

Theorem 3. The IBP distribution with left-order-form equivalence classes is log-

submodular for each observation’s feature assignments.

Theorem 4. The IBP distribution with shifted equivalence classes is log-submodular

for each observation’s feature assignments.

Theorem 5. A parametric analogue of the IBP distribution (a finite beta-Bernoulli

distribution) is log-submodular for each observation’s feature assignments.

We provide proofs and explanations of these theorems in this chapter.

In the next chapter, we show how the maximization-expectation framework

from Kurihara and Welling [2008] can be used to perform approximate MAP in-

ference with a nonnegative linear-Gaussian IBP model via a sequence of submod-

ular maximizations. In Chapter 5, we outline additional techniques and models
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for phrasing approximate MAP inference with feature models as a sequence of

submodular maximizations.

3.1 Log-Submodularity of the IBP Distribution

The log of the two-parameter IBP distribution with left-order-form (lof) equiva-

lence classes is (see §2.2):

log (P ([Z]lof|α, β)) =K+log (αβ)− log

2N−1∏
h=1

Kh!

− α N∑
i=1

β

β + i− 1

+

K+∑
k=1

log

(
Γ (mk) Γ (N −mk + β)

Γ (N + β)

)
, (3.1)

where α, β are positive constants, mk =
∑N

n=1 znk are the number of non-zero

indices in column k, and Kh are the number of features with binary represen-

tation h (see §2.2). The log of the two parameter IBP distribution with shifted

equivalence classes is very similar:

log (P ([Z]shift|α, β)) =K+log (αβ)− log (K+!)− α
N∑
i=1

β

β + i− 1

+

K+∑
k=1

log

(
Γ (mk) Γ (N −mk + β)

Γ (N + β)

)
, (3.2)

where the only difference from the lof equivalence class is that the history term

is replaced with K+!.

We begin by showing that the log of the shifted equivalence class IBP distri-

bution is submodular for each observation. This proof is straightforward and will

naturally lead us to the more complicated lof proof. Following these proofs, the

reader may be curious whether the full joint log-IBP distribution is submodular,

rather than just the conditional IBP distribution. In Appendix A.2 we show that

the joint IBP distribution is not submodular.
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3.1.1 Proving the Log of the IBP Distribution with Shifted

Equivalence Classes is Submodular

We begin by showing that the shifted equivalence class IBP distribution as a

function of each observation can be written as linear pseudo-Boolean function

plus a regularization term that penalizes new features. After establishing this

formulation, proving that it is submodular is straightforward.

3.1.1.1 Reformulating the Objective Function

Examining the log IBP distribution for each observation while fixing the other

observations yields:

Fshift(Zn·) = log

(
αβ

Γ (N + β)

)
κn − log

(
(K+\n + κn)!

)
+

K+∑
k=1

log
(
Γ
(
mk\n + znk

)
Γ
(
N −mk\n − znk + β

))
+ const (3.3)

where a “\n” subscript indicates the given variable is determined after removing

the nth observation fromZ, e.g.mk\n =
∑N

n′=1 zn′k−znk, and κn =
∑K+

k=1 1{mk\n=0}znk

is the number of features unique to the nth observation, and const absorbs the

terms that do not depend on Zn·. The purpose of this formulation is to separate

the components of the IBP distribution that depend on Zn· from those that do

not.

Next, we define the following auxiliary function:

ν(znk) =


0, if mk\n = 0 and znk = 0

log
(
Γ
(
mk\n + znk

)
Γ
(
N −mk\n − znk + β

))
+ 1{mk\n=0}znklog

(
αβ

Γ(N+β)

)
, otherwise.

This function incorporates all components of Fshift(Zn·) except the log
(
(K+\n + κn)!

)
term. Our goal is to write Fshift(Zn·) as an inner product plus a regularization

term. We do this by using the auxiliary function to form a vector vn with com-
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ponents:

vnk = ν(znk = 1)− ν(znk = 0), (3.4)

which lets us rewrite Eq. 3.3 as

Fshift(Zn·) =

K+∑
k=1

[znkvnk + ν(znk = 0)]− log
(
(K+\n + κn)!

)
+ const. (3.5)

Absorbing ν(znk = 0) into const for all k ∈ [K+] yields:

Fshift(Zn·) = Zn·vn − log
(
(K+\n + κn)!

)
+ const, (3.6)

which is a linear pseudo-Boolean function plus a regularizing term that penalizes

new features.

3.1.1.2 Proving the Objective Function is Submodular

We prove the IBP distribution as a function of each observation, Eq. 3.6, is

submodular by using the definition of submodularity given in §2.5. We use Gshift

when treating Eq. 3.6 as a set function:

Fshift(Zn·) = Gshift(An) =
∑
a∈An

vna − log
(
(K+\n + κAn)!

)
+ const. (3.7)

with An = {i : zni = 1} and κAn =
∑K+

k=1 1{mk\n=0}1{k∈An}. To be submodular we

must have

Gshift(An ∪ {e})− Gshift(An) ≥ Gshift(Bn ∪ {e})− Gshift(Bn), (3.8)

for all An ⊆ Bn ⊆ [K+] and elements e ∈ [K+] \Bn. From the definition of Gshift,

we need:

vne − log
(
(K+\n + κAn∪{e})!

)
+ log

(
(K+\n + κAn)!

)
≥

vne − log
(
(K+\n + κBn∪{e})!

)
+ log

(
(K+\n + κBn)!

)
, (3.9)
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which simplifies to

log

(
(K+\n + κAn)!

(K+\n + κAn∪{e})!

)
≥ log

(
(K+\n + κBn)!

(K+\n + κBn∪{e})!

)
. (3.10)

Note that this simplification removes the linear terms from the inequality. This is

a general property of submodular functions: linear set functions are submodular.

Furthermore, note that models that have distributions that only linearly depend

on Z through its selection of K+ will demonstrate submodularity as the K+

dependency can always be absorbed in a linear term. Eq. 3.10 has two cases:

1. me\n > 0 so κBn∪{e} = κBn and κAn∪{e} = κAn , yielding 0 ≥ 0 for Eq. 3.10,

which is true for all e ∈ [K+] \Bn and An ⊆ Bn.

2. me\n = 0 so κBn∪{e} = κBn + 1 and κAn∪{e} = κAn + 1. Plugging this into

Eq. 3.10 we have

log

(
(K+\n + κAn)!

(K+\n + κAn + 1)!

)
≥ log

(
(K+\n + κBn)!

(K+\n + κBn + 1)!

)
. (3.11)

which simplifies to

κBn ≥ κAn , (3.12)

which is again true for all e ∈ [K+] \Bn and An ⊆ Bn.

As a result, the log of the IBP distribution for each observation’s feature assign-

ments is submodular. �

3.1.2 Proving the Log of the IBP Distribution with Left-

Order-Form Equivalence Classes is Submodular

Similar to the previous subsection, here we show that the left-order-form equiv-

alence (lof) class IBP distribution is submodular for each observation’s feature

assignment.
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3.1.2.1 Reformulating the Objective Function

Because the only difference between the lof equivalence class IBP distribution

and the shifted equivalence class IBP distribution is the histories term, a similar

derivation to the one given in §3.1.1.1 results in the following reformulation of

Eq. 3.1 (compare with Eq. 3.6):

Flof(Zn·) = Zn·vn − Λ(Zn·) + const, (3.13)

where Λ(Zn·) (formally defined below) accounts for impact of Zn· on the histories

term.

To define Λ(Zn·), we must first specify some new notation. Let h−n,k denote

the history of Z ·k formed by removing znk from Z ·k. Furthermore define the

collection of sets Sn = {sni} for i = 1, . . . , 2N−1, where sni = {k : h−n,k = i},
which specifies the indices of features that have the same history after removing

Zn·. Note that a maximum of K+ sets in Sn will be nonempty and each feature

index can only belong to one s set. For a given Zn·, the histories term can be

written as

2N−1∑
m=1

log (Km!) =
2N−1∑
m=1

log

(( ∑
k∈snm

znk

)
!

)
+ log

(( ∑
k∈snm

z̄nk

)
!

)
. (3.14)

For given Zn·, Sn is fixed, so we can define Λ(Zn·) strictly as a function of Zn·

as follows:

Λ(Zn·) =
2N−1∑
m=1

log

(( ∑
k∈snm

znk

)
!

)
+ log

(( ∑
k∈snm

z̄nk

)
!

)
(3.15)

=
∑

i:|sni|>1

log

((∑
k∈sni

znk

)
!

)
+ log

((∑
k∈sni

z̄nk

)
!

)
(3.16)

=
∑

i:|sni|>1

log

((∑
k∈sni

znk

)
!

(
|sni| −

∑
k∈sni

znk

)
!

)
(3.17)

=
∑

i:|sni|>1

log (ζni! (|sni| − ζni)!) (3.18)
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with ζni =
∑

k∈sni znk.

3.1.2.2 Proving the Objective Function is Submodular

Similar to §3.1.1.2, we prove the IBP distribution with the left-order-form equiv-

alence classes is log submodular by using the definition of submodularity given

in §2.5. We use Glof when treating Eq. 3.6 as a set function:

Flof(Zn·) = Glof(An) =
∑
a∈An

vna − Λ(An) + const, (3.19)

with An = {i : zni = 1}, Λ(An) =
∑

i:|sni|>1 log (ζAni! (|sni| − ζAni)!), and ζAni =

|An ∩ sni|. To be submodular we must have

Glof(An ∪ {e})− Glof(An) ≥ Glof(Bn ∪ {e})− Glof(Bn), (3.20)

for all An ⊆ Bn ⊆ [K+] and elements e ∈ [K+] \Bn. Following the same steps as

§3.1.1.2 leads us to the following inequality:

Λ(An)− Λ(An ∪ {e}) ≥ Λ(Bn)− Λ(Bn ∪ {e}) (3.21)∑
i:|sni|>1

log

(
ζAni! (|sni| − ζAni)!

ζAn∪{e}i!
(
|sni| − ζAn∪{e}i

)
!

)
≥

∑
i:|sni|>1

log

(
ζBni! (|sni| − ζBni)!

ζBn∪{e}i!
(
|sni| − ζBn∪{e}i

)
!

)
.

(3.22)

Without loss of generality, suppose the arbitrary but specific test element e be-

longs to set snr for some r. We have two cases:

1. |snr| = 1, then we have ζAn∪{e}i = ζAni for all i (and likewise for Bn) yielding

the inequality 0 ≥ 0
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2. |snr| > 1 yields the inequality

log

(
ζAnr! (|snr| − ζAnr)!

(ζAnr + 1)! (|snr| − ζAnr − 1)!

)
≥ log

(
ζBnr! (|snr| − ζBnr)!

(ζBnr + 1)! (|snr| − ζBnr − 1)!

)
log

(
(|snr| − ζAnr)

(ζAnr + 1)

)
≥ log

(
(|snr| − ζBnr)

(ζBnr + 1)

)
(|snr| − ζAnr) (ζBnr + 1) ≥ (|snr| − ζBnr) (ζAnr + 1)

ζBnr(|snr|+ 1) ≥ ζAnr(|snr|+ 1)

ζBnr ≥ ζAnr (3.23)

which is true for all An ⊆ Bn ⊆ [K+] and elements e ∈ [K+] \Bn.

�

3.2 Log-Submodularity of a Parametric Beta-

Bernoulli Distribution

Griffiths and Ghahramani [2006] derived the IBP distribution by placing inde-

pendent beta priors on Bernoulli generated entries of an N ×K binary matrix,

marginalizing over the beta priors, and letting K go to infinity. Here we show

that the parametric beta-Bernoulli distribution is log-submodular for each of the

observation’s feature assignments. The finite model specifies the following gener-

ative process

πk
iid∼ beta(

βα

K
, β) (3.24)

znk
iid∼ Bernoulli(πk) (3.25)

where marginalizing over the π parameters leads to (see Ghahramani et al. [2007]

for details):

log (P (Z|α, β)) =
K∑
k=1

log

(
Γ
(
mk + αβ

K

)
Γ (N −mk + β) Γ

(
αβ
K

+ β
)

Γ
(
N + αβ

K
+ β

)
Γ
(
αβ
K

)
Γ (β)

)
. (3.26)
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As a function of Zn·, the log distribution is:

Ffinite(Z) =
K∑
k=1

log

(
Γ

(
mk\n + znk +

αβ

K

)
Γ
(
N −mk\n − znk + β

))
+ const,

(3.27)

where the auxiliary function

ν ′(znk) = log

(
Γ

(
mk\n + znk +

αβ

K

)
Γ
(
N −mk\n − znk + β

))
(3.28)

lets us define the vector υn of length K with components

υnk = ν ′(znk = 1)− ν ′(znk = 0) (3.29)

which allows us to rewrite the objective function as (see §3.1.1.1 for a similar

derivation):

Ffinite(Zn·) = Zn·υ
T
n + const. (3.30)

As we saw in §3.1.1.1, a linear pseudo-Boolean function (inner product) is trivially

submodular. �

3.3 Discussion

In this chapter, we showed certain parametric and nonparametric feature alloca-

tion distributions are log-submodular for each observation’s feature assignment.

However, we have not discussed how to use these results to perform inference:

the next two chapters focus on this problem. Briefly stated, the algorithmic

frameworks formulate a coordinate ascent optimization routine that iteratively

optimizes the Zn· assignments.

For instance, given a probabilistic model with joint probability, p(Z,X,A|θ) =

p(X|Z,A,θ)p([Z]|θ)p(A|θ), for feature allocation Z, model parameters A, ob-

servations X, and hyperparameters θ, we could iteratively maximize Z and A to

obtain an approximate MAP solution. If p(X|Z,A,θ) is log submodular, then
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the results of this chapter in combination with Theorem 1 (which states that

nonnegative linear combinations of submodular functions yields a submodular

function) allows us to find approximate MAP assignments of Z via a sequence of

submodular maximizations.



Chapter 4

Submodular MAP Inference for

Nonnegative Linear-Gaussian

Latent Feature Models

In this chapter, we show how the submodularity results of the previous chapter

can be used to perform approximate MAP inference with a nonnegative linear-

Gaussian IBP model. Specifically, we apply the maximization-expectation (ME)

algorithm of Kurihara and Welling [2008] to a nonnegative linear-Gaussian IBP

model and treat the evidence lower bound as an objective function for the latent

feature assignments of an observation. As we show, this objective function is

submodular and can be optimized using a simple greedy algorithm that provides

a 1
3

optimality guarantee. The ME algorithm and nonnegative linear-Gaussian

IBP provide a concrete framework for performing submodular MAP inference

with Bayesian nonparametric latent feature models, however, neither is essential

for this development. In the next chapter, we discuss a broader class of models

that display submodularity for each observation’s latent feature assignments.
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4.1 Nonnegative Linear-Gaussian IBP Model

We consider the following probabilistic model:

p(X,Z,A|θ) = p(X|Z,A, σ2
X)p(A|σ2

A)p([Z]|α) (4.1)

p(X|Z,A, σ2
A) =

N∏
n=1

N(Xn·;Zn·A, σ
2
AI) (4.2)

p(A|0, σ2
A) =

K∏
k=1

D∏
d=1

TN(akd; 0, σ2
A) (4.3)

P ([Z]|α) =
αK+

K+!
e−αHN

K+∏
k=1

(N −mk)!(mk − 1)!

N !
. (4.4)

This is a nonnegative linear-Gaussian IBP model, where the prior over the la-

tent factors, p(A|0, σ2
A), is a centred i.i.d. truncated Gaussian with nonnegative

support, denoted TN, see Appendix A.1 for a details of this distribution. Figure

4.1 provides a graphical illustration of the linear-Gaussian model. As we show, a

nonnegative prior for the linear-Gaussian model yields a submodular maximiza-

tion problem when optimizing Z. We use a truncated Gaussian as it is conjugate

to the Gaussian likelihood, but other nonnegative priors such as an exponential

or beta prior can be plugged into this model with little change to the derivations

below. For brevity we assume the hyperparameters, θ = {α, σ2
A, σ

2
X}, are fixed

and discuss hyperparameter inference in Appendix A.3.2. For simplicity, we are

using the single-parameter variant of the IBP prior (which is equivalent to the

two-parameter IBP prior when β = 1) with the shifted equivalence classes, but

any of the log-submodular priors specified in the previous chapter can be plugged

into this model.

4.2 Evidence Lower Bound

In the ME framework, we approximate the true posterior distribution via a mean

field variational Bayes (MFVB) assumption:

p(Z,A|X,θ) ≈ q(A)δ(Z −Z∗). (4.5)
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Figure 4.1: Graphical illustration of the linear-Gaussian model. The binary ma-
trix Z linearly combines the factors A to form the observed data X. This
illustration is based on a similar illustration provided in Doshi-Velez [2009].

That is, we maintain a variational distribution over the latent factors A and

optimize the latent features Z. Given the MFVB constraint, we determine the

variational distributions by minimizing the KL-divergence between the variational

distributions and the true posterior, which is equivalent to maximizing a lower

bound on the evidence, see §2.3 for a review of MFVB or Attias [2000] for a

detailed discussion:

log p(X|θ) = Eq[log p(X,A,Z|θ)] +H[q] +D(q‖p)
≥ Eq[log p(X,A,Z|θ)] +H[q] ≡ L (4.6)

where H[q] is the entropy of variational distribution q and D(q‖p) represents the

KL-divergence between the variational distribution and the true posterior. The

evidence lower bound (ELBO) for the nonnegative linear-Gaussian IBP model is:

L = Eq[log p(X,A,Z|θ)] +H[q] (4.7)

= Eq[log p(X|Z,A, σ2
X)] + Eq[log p(A|σ2

A)] + Eq[log p(Z|α)]

+H[q(A)] +H[q(Z)], (4.8)

which is simply the variational expectation over the log of the joint probability

plus the entropy of the approximating distribution. The entropy of the delta

function for a discrete random variable is zero, so we can remove this term.

By inserting the appropriate probabilities and performing a bit of algebra (see
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Appendix A.3.1 for details), the ELBO can be written as

1

σ2
X

N∑
n=1

[
−1

2
Zn·ΦΦTZT

n· +Zn·ξ
T
n·

]

− log (K+!) +
K+∑
k=1

log

(
(N −mk)!(mk − 1)!

N !

)
+

K∑
k=1

ηk + const (4.9)

with

ξnk = Φk·X
T
n· +

1

2

D∑
d=1

[
E[akd]

2 − E[a2
kd]
]

(4.10)

and

ηk =
1

2

D∑
d=1

[
−log

(
πσ2

A

2α2/D

)
− E[a2

kd]

σ2
A

+ 2H(q(akd))
]

(4.11)

where

Φk· = (E [ak1] , . . . ,E [akD]) , (4.12)

and all expectations are with respect to q(A), which is defined in the next section.

The ELBO should have Z∗ instead of Z as we implicitly took the expectation

with respect to δ(Z−Z∗), however, we will obtain Z∗ by maximizing the ELBO

with respect to Z, so we abuse notation and let Z indicate Z∗ in the context of

evaluation.

By reformulating the ELBO, we see that it is the sum of N quadratic pseudo-

Boolean functions that arise from the likelihood, plus a term that penalizes an

increasing number of features (−log (K+!)) which arises from the IBP prior, plus a

final term from the IBP and factor prior that encourages features to be active for

a small or large number of observations (the log
(

(N−mk)!(mk−1)!
N !

)
component) and

have small-valued, high-entropy factors (the −E[a2kd]

σ2
A

+ 2H(q(akd)) component).

This ELBO demonstrates the classic “Occam’s Razor” characteristic of Bayesian

models: the variational distribution that maximizes the ELBO must describe the

data well (else the quadratic pseudo-Boolean likelihood component will negatively
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dominate the ELBO), while selecting a small number of informative features that

reasonably match the properties of our prior (else the prior or entropy terms will

negatively dominate the ELBO).

In §4.5 we show that obtaining q(Z) = δ(Z −Z∗), i.e. maximizing this lower

bound with respect to Z, can be formulated as a submodular maximization prob-

lem.

4.3 Variational Factor Updates

Maximizing Eq. 4.9 with respect to q(A) yields, see Appendix A.3.3,

q(A) =
K∏
k=1

D∏
d=1

TN(akd; µ̃kd, σ̃
2
kd), (4.13)

with parameter updates

µ̃kd = ρk

N∑
n=1

z∗nk

(
xnd −

∑
k′ 6=k

z∗nk′E [ak′d]
)

(4.14)

σ̃2
kd = ρkσ

2
X , (4.15)

where ρk =
(
mk +

σ2
X

σ2
A

)−1
. These updates take O(NK2D), and the relevant

moments are:

E [akd] = µ̃kd + σ̃kd

√
2/π

erfcx (℘kd)
(4.16)

E
[
a2
kd

]
= µ̃2

kd + σ̃2
kd + σ̃kdµ̃kd

√
2/π

erfcx (℘kd)
(4.17)

with ℘kd = − µ̃kd
σ̃kd
√

2
and erfcx (y) = ey

2
(1− erf(y)) representing the scaled comple-

mentary error function. Note that we are using q(A) as shorthand for q(A|µ̃kd, σ̃kd).
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The entropy of a truncated Gaussian is:

H(q(akd)) =
1

2
ln
πeσ̃2

kd

2
+ ln erfc

(
− µ̃kd

σ̃kd
√

2

)
+
µ̃kd
σ̃kd

√
1

2π

(
erfcx

(
− µ̃kd

σ̃kd
√

2

))−1

, (4.18)

where erfc(·) is the complementary error function: erfc(y) = 1− erf(y).

4.4 Evidence Lower Bound in the Infinite Limit

The fastidious reader may have noticed that the IBP prior is defined for un-

bounded K—where only the active features affect the ELBO—but the entropy

and prior terms for the latent factors are defined for all K. Here we show that

the ELBO, Eq. 4.9, is well-defined in the limit K → ∞; in fact, all instances of

K are simply replaced by K+. However, because we are using a variational ap-

proximation, a user must specify a maximum model complexity that K+ cannot

exceed. But unlike purely variational IBP methods [Doshi-Velez et al., 2009b],

the q(Z) updates are not affected by inactive features.

We take this limit by breaking the ELBO into components 1, . . . , K+ and

K+ + 1, . . . , K and note that when mk = 0: µ̃kd = 0, σ̃2
kd = σ2

A, and H(akd) =
1
2
log
(
πeσ2

A

2

)
. After some algebra, the ELBO becomes:

ψK+ +
1

2

K∑
k=K++1

D∑
d=1

[
−log

(
πσ2

A

2

)
− E[a2

kd]

σ2
A

+ log

(
πeσ2

A

2

)]
(4.19)

where ψK+ is Eq. 4.9 but with K+ replacing all K. From Eq. A.3, we see that

E[a2
kd] = σ2

A when mk = 0, which causes all terms to cancel in Eq. 4.19 except

ψK+ .

The ELBO remains well-defined because both the likelihood and IBP prior

terms do not depend on inactive features, so for inactive features the KL-divergence

between the posterior and variational distributions is simply the KL-divergence

between p(A) and q(A). For inactive features, p(A) = q(A), and as a result,

the KL-divergence is zero. This is a general result for the ME framework: as
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long as the likelihood does not depend on inactive features and the priors are

independent, the KL-divergence between the variational posterior and the true

posterior will be zero for inactive features.

4.5 Feature Allocation Objective Function

Given q(A), we compute MAP estimates of Z by maximizing the ELBO [Eq.

4.9] for each n ∈ {1, . . . , N} while holding constant all n′ ∈ {1, . . . , N} \ n.

Decomposing Eq. 4.9 into terms that depend on Zn· and those that do not yields

(see Appendix A.3.4):

F(Zn·) =− 1

2σ2
X

Zn·ΦΦTZT
n· +Zn·ω

T
n· + const

− log

((
K+\n +

K+∑
k=1

[
1{mk\n=0}znk

])
!

)
(4.20)

Φk· =
(
E [ak1] , . . . ,E [akD]

)
ωnk =

1

σ2
X

(
Φk·X

T
n· +

1

2

D∑
d=1

[
E[akd]

2 − E[a2
kd]
])

+ ν(znk = 1)− ν(znk = 0) + 1{mk\n=0}ηk,

which is a quadratic pseudo-Boolean function plus a term that penalizes K+,

where 1{·} is the indicator function, a “\n” subscript indicates the given variable

is determined after removing the nth row from Z, and

ν(znk) =

0, if mk\n = 0 and znk = 0

log
(
(N −mk\n − znk)!(mk\n + znk − 1)!/N !

)
, otherwise

Proving this objective function is submodular is trivial given the results of the

previous chapters. Namely, from Theorem 1 of §2.5, we know that nonnegative

linear combinations of submodular functions are submodular. From Theorem 2

of §2.5, we also know that quadratic pseudo-Boolean functions are submodular if

the quadratic weight matrix is nonpositive, which is the case for Eq. 4.20 since Φ is
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nonnegative. Finally, the regularization term log
((
K+\n +

∑K+

k=1

[
1{mk\n=0}znk

])
!
)

is from the log of the IBP prior, which as we showed in §3.1.1, is submodular.

Therefore, Eq. 4.20 is a nonnegative linear combination of submodular functions,

and by Theorem 1, it is submodular.

4.6 Finding the Optimal Feature Allocation

The submodular objective function, Eq. 4.20, is an unconstrained non-monotone

submodular function. Feige et al. [2011] showed that an approximibility guar-

antee is NP-hard for this class of functions. However, Feige et al. [2011] also

showed that a deterministic local-search algorithm obtains at least a 1
3
− ε

K
ap-

proximation to the optimal solution for a ground set of size K and parameter

ε, provided the submodular objective function is nonnegative. The local search

algorithm queries the submodular function O(1
ε
K3log (K)) times for a ground set

of size K, but as discussed below, this is a loose upper bound. In fact, a slight

reformulation of their algorithm yields a 1
3
−ε approximation lower bound with an

improved O(1
ε
K2log (K)) complexity. Recently, Buchbinder et al. [2012] proposed

a linear greedy algorithm that obtained an improved 1
3

approximation for nonneg-

ative submodular functions using exactly 2K queries to the submodular function.

Despite the improved complexity and performance bound, we find that the local-

search algorithm performs better empirically. In the following subsections, we

present these algorithms and discuss them in the context of the linear-Gaussian

feature allocation objective function, Eq. 4.20.

4.6.1 Feige et al. [2011] Local Search Algorithm

For a submodular function F : 2V → R with ground set V = [K], solution

set A ⊆ V , and parameter ε, the local search (ls) unconstrained submodular

maximization (USM) algorithm operates as described in Algorithm 1.



4.6 Finding the Optimal Feature Allocation 38

Algorithm 1 Deterministic Local Search USM Algorithm

1. initialize: let A = {arg maxw∈V F({w})}

2. grow : while there is an element w ∈ V \A s.t. F(A∪{w}) > (1 + ε
K2 )F(A):

let A := A ∪ {w}

3. prune: if there is an element w ∈ A s.t. F(A \ {w}) > (1 + ε
K2 )F(A): let

A := A \ {w}, goto 2.

4. return: maximum of F(A) and F(V \ A).

The ls-algorithm makes O(1
ε
K3log (K)) queries to the submodular function.

This is a loose bound that occurs when all add/remove operations improve the

objective function by a relative factor of exactly ε
K2 , see Appendix A.4 for further

discussion and §4.6.3 for an empirical characterization. The ls-algorithm obtains

a solution that is greater than 1
3
(1− ε

K
)OPT, where OPT is the maximum value

of F.

In §3.1 of Feige et al. [2011], the authors prove the ls algorithm optimality

bound and runtime by requiring that each grow/prune step increases the objective

function by a relative factor of at least 1 + ε
K2 . If we instead require that the

grow/prune steps increase the objective function by a relative factor of at least

1 + ε
K

their exact proofs remain valid, and the optimality bound becomes 1
3
− ε

with improved worst case complexity O(1
ε
K2log (K)). We use this variation of

the ls algorithm throughout this thesis.

Since the submodular ELBO objective function, Eq. 4.20, is not strictly non-

negative, we use its normalized cost function to interpret the ls-approximability

guarantee: F(Zn·)− Fn0, where Fn0 is the minimum value of F(Zn·). Using the

normalized cost function, we obtain the following optimality guarantee:

F(Z ls
n·) ≥ Fn0 +

1

3
(1− ε) (F(Z∗n·)− Fn0) (4.21)

where the superscript “ls” denotes the solution from the ls-algorithm and an

asterisk denotes the set that obtains the true maximum. This inequality states
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that the ls-algorithm solution is guaranteed to perform better than the worst

solution by an amount proportional to the difference between the optimal and

worst solution. We emphasize, however, that this inequality does not provide an

optimality guarantee for the global MAP solution.

Furthermore, we can set ε = 0 to avoid computing the global minimum of the

submodular function. This choice leads to an unbounded runtime according to

the complexity bound from Feige et al. [2011]. However, we performed each of

the experiments relevant to Figures 4.2-4.7 with both ε = 0 and ε = 10−7 and

found that the algorithms produced identical results in all cases. The reason this

occured, as discussed further in Appendix A.4, is that adding or removing an

element to the solution set either decreased the objective function or increased

the objective function by several orders of magnitude more than the minimum

value. From our experiments below and in §4.9, we conjecture that edge cases

only result in contrived examples and choosing ε = 0 is identical to choosing a

sufficiently small, but non-zero, value. Therefore, unless noted otherwise, we use

ε = 0.

4.6.2 Buchbinder et al. [2012] Linear Greedy Algorithm

For a submodular function F : 2V → R with ground set V = [K], and sets C,E,

the linear greedy (lg) algorithm operates as described in Algorithm 2.

Algorithm 2 Deterministic Linear Greedy USM Algorithm

1. initialize: let C := V , E := ∅

2. loop: for each element w ∈ V :
if F(C \ {w})− F(C) > F(E ∪ {w})− F(E): remove w from C
else: add w to E

3. return: C or E (they are equivalent)

This simple add/remove greedy algorithm makes exactly 2K calls to the sub-

modular function, and Buchbinder et al. [2012] showed that this solution has

a lower bound of 1
3
OPT. As before, the submodular ELBO objective function,
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Eq. 4.20, is not strictly nonnegative so we must again use the normalized cost

function to interpret the approximability guarantee:

F(Z ls
n·) ≥ Fn0 +

1

3
(F(Z∗n·)− Fn0) , (4.22)

where this approximability guarantee is tight and does not have the ε parameter

like the local search algorithm.

Buchbinder et al. [2012] also propose a stochastic linear greedy algorithm

that obtains an expected lower bound of 1
2
OPT. The algorithm is the same as

the deterministic version except if adding an element to E increases the objective

function by δE and removing and element from C increases the objective function

by δC , then the element is added to E with probability δE
δC+δE

. In the event that

δE is negative, the element is removed from C and vice-versa for a negative δC .

Buchbinder et al. [2012] prove that δE + δC ≥ 0, so both δE and δC will not be

negative.

The optimality bounds for both the stochastic and deterministic algorithms

do not depend on the order of traversal for the elements in V . From a number

of informal tests, we found that both algorithms tend to perform better if the

elements in V are greedily chosen such that at each step we choose the element

to add/remove that results in the largest objective function increase. Locating

this element takes O(K) calls to the submodular objective function, and as a

result, the complexity of the stochastic and deterministic ordered linear greedy

algorithm is O(K2). We perform a formal comparison of these algorithms in the

next subsection.

4.6.3 Submodular Maximization Experiments

We studied the empirical performance of the previously discussed submodular

maximization algorithms in several contexts. We use the abbreviations listed in

Table 4.1 to reference the submodular maximization algorithms.

In the first experiment, we generated N = 500, D = 50 high-noise data via
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Table 4.1: Abbreviations for the submodular maximization algorithms discussed
in this thesis for a submodular function of size K. Asterisks denote expected
optimality guarantees for stochastic algorithms.

Abbreviation Description
Number of submodular
function queries

Optimality
guarantee

ls
local search algorithm of
Feige et al. [2011]

O(1
εK

2log (K)) 1
3(1− ε)OPT

lg
deterministic linear greedy
algorithm of Buchbinder et
al. [2012]

2K 1
3OPT

lg-ord

deterministic linear greedy
algorithm of Buchbinder et
al. [2012] with greedy
ordering

O(K2) 1
3OPT

lg-sto
stochastic linear greedy
algorithm of Buchbinder et
al. [2012]

2K 1
2OPT∗

lg-sto-ord

stochastic linear greedy
algorithm of Buchbinder et
al. [2012] with greedy
ordering

O(K2) 1
2OPT∗

rand randomly drawn solution 1 None
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the following process:

akd|σA ∼ TN(0, σA) (4.23)

Z|α ∼ IBP(α) (4.24)

Xn·|σX ∼ N(Zn·A, σXI) (4.25)

with parameters σA = 1.0, α = K
10

, and σX = 0.5. We examined the performance

of the submodular algorithms in optimizing the linear-Gaussian ELBO objective

function for each Zn·, Eq. 4.20, by comparing them to the brute-force optimal

solution for K = 2, 4, . . . , 14. In this experiment, we performed one optimization

pass over all Zn· and optimized each Zn· independently of Zn′· for all n′ 6= n

while holding A constant to either (case (i)) the true data-generating factors or

(case (ii)) a random draw from the true generating distribution, TN(0, 1).

Figure 4.2 shows a boxplot of the fraction of the true maximum optimization

value, (F (S) − F0)/(OPT − F0) for solution set S, for each submodular maxi-

mization algorithm for case (i), and Figure 4.3 shows a similar boxplot for case

(ii). Each boxplot was created from the results of one optimization pass over the

500 data instances for ten randomly generated input datasets for each K value,

i.e. each K entry is composed of 5000 optimizations. The central mark on the

displayed boxplots represents the median, the edges of the boxes are the 25th

and 75th percentile, and the red crosses indicate the points that fall outside of

the 25th and 75th percentile.

The boxplot characteristics for case (i) and case (ii) were similar: the ls and

lg-ord consistently obtained over 99% of the optimum value across all K values,

meaning that we could empirically replace the 1
3

guarantee with a 99
100

guarantee,

though this is dependent on both the objective function and the input data. The

other submodular maximization algorithms tend towards better solutions as K

grows. This result is due to F0 becoming increasingly negative as K increases,

though for all K, these algorithms result in a larger performance variance and

smaller performance mean than the ls and lg-ord algorithms. The random solution

converges to a mean near 0.9 at K = 4 and maintains this mean through K = 14

with a decreasing variance as K grows, indicating that this particular set of

optimization problems favor solutions near 0.9 acrossK values. Indeed, Figure 4.4
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Figure 4.2: Fraction of the true maximum optimization value, (F (S) −
F0)/(OPT − F0) for solution set S, obtained for each of the five submodular
optimization algorithms and a randomly chosen solution with A fixed to the true
data-generating factors.
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Figure 4.3: Fraction of the true maximum optimization value, (F (S) −
F0)/(OPT− F0) for solution set S, obtained for each of the five submodular op-
timization algorithms and a randomly chosen solution with A fixed to randomly
drawn values from the true generating distribution.
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shows the empirical density of F (S)/OPT for each K value, and we see that the

F (S)/OPT densities tend towards a long tailed density with the majority of the

mass focused between [0.6, 1.0] with means between [0.8,0.95].

While case (i) and case (ii) tests produced similar results, the optimization

fraction variances were always larger for case (i). This occured because F0 tended

to be less negative when A was set to its true value because the worst solution

usually included all factors, which was less penalizing when some factors actually

agreed with the data.
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Figure 4.4: Empirical density of F (S)/OPT for all solution sets S for various K
values where A was fixed to the (left) the true generating factors and (right)
a random draw from the true factor distribution. We determined the empirical
density by sampling min(104, 2K × 500) F (S)/OPT values from each of the ten
trials at each K value. The density was estimated using the kernel function in
the stats R library (a standard kernel density estimator with a Gaussian kernel
with bandwidth 0.02).

We further studied the performance of the submodular maximization algo-

rithms in a more-realistic MAP inference setting. Specifically, we generated

N = 500, D = 50 noisy binary images by linearly combining a subset of the

binary latent factors shown in Figure 4.5 (commonly referred to as the “Cam-

bridge bars” factors), X = ZA + σXI. Each entry of the feature assignment

matrix, Z, was generated independently from a Bernoulli with probability 0.5,

znk ∼ Bernoulli(0.5), and we fixed the noise at σX = 0.5.

Rather than performing independent optimizations in a single pass over the

data, we maintained the brute-force optimum feature assignments and updated

q(A) after each optimization and performed five iterations over the entire dataset
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Figure 4.5: “Cambridge bars” binary latent factors. Note that the binary factors
are mostly distinct but horizontal and vertical bars can overlap by exactly one
square.

for each K value—this set-up resembled an actual submodular optimization infer-

ence procedure. The latent factors, A, were initialized randomly from a centred

truncated Gaussian with unit variance, and the feature assignments, Z, were

initialized from a random draw from Bernoulli(0.5). Figure 4.6 shows the box-

plot from this experiment with each test performed with ten randomly generated

datasets for each K value. These results again demonstrate that ls and lg-ord tend

to outperform the other submodular maximization algorithms. Furthermore, the

mean values of all submodular maximization algorithms (excluding the random

solution) increased as K increased.

The solution variances for this experiment were larger than the solution vari-

ances for the previous experiments because the signal consisted of well-defined

binary factors that caused the true maximum to be much larger than the previ-

ous experiments. In other words, the factors in the previous experiements closely

resembled each other, causing misspecified solutions to be relatively close to the

optimum. In this experiment, however, misspecifying the latent binary factors

resulted in a larger penalty as the factors did not resemble each other. Figure 4.7

shows the empirical density of F (S)/OPT for each K value for the Cambridge

bars experiment. The variances of these densities were larger than the previous

experiments because the data was composed of distinct binary factors. Solutions

that included a subset of the true factors resulted in significantly better perfor-
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mance than solutions that included incorrect factors, and in turn, the F (S)/OPT

density had a wider range of distinct values. We note, however, that as K in-

creased, the density variance shrank and the mean converged to roughly 0.75—a

similar characteristic as the previous experiments.
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Figure 4.6: Fraction of the true maximum optimization value, (F (S) −
F0)/(OPT − F0) for solution set S, obtained for each of the five submodular
optimization algorithms and a randomly chosen solution with A initialized to
randomly drawn values from the true generating distribution.

Because of computational constraints, we are limited to small K values when

comparing the submodular maximization algorithm results to the exact brute-

force optimum. However, we can examine much larger K values by comparing

the algorithms to each other rather than the optimal solution. In this experiment,

we generatedN = 1000, D = 1000 data from the linear-Gaussian model, where we

randomly sampled K Cambridge bar factors from 10× 100 binary images similar

to those shown in Figure 4.5, sampled the feature assignments independently with

0.5 probability znk ∼ Bernoulli(0.5), and set the data noise to σX = 0.5. Similar

to our previous experiments, we independently optimized each Zn· in a single

pass through the data while fixing A to either (case (i)) the true data generating

factors or (case (ii)) a random draw from a centred truncated Gaussian with unit

variance.
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Figure 4.7: Empirical distribution of F (S)/OPT for all solution sets S for various
K for the Cambridge bars experiment. We determined the empirical density by
sampling min(104, 2K×500) F (S)/OPT values from each of the ten trials at each
K value. We estimated the density by using the kernel function in the stats

R library (which uses standard kernel density estimation with a Gaussian kernel
and a bandwidth of 0.02).

Figure 4.8 shows the fraction of maximizations that obtained the relative

maximum value among the tested submodular maximization algorithms. The ls

algorithm consistently outperformed the other algorithms in these experiements.

All algorithms obtained the relative maximum value for K ≤ 35 when A was

fixed to a random draw from a truncated Gaussian. This occured because in all

cases the relative maximum was the empty set: the misspecified fixed A did not

explain the observed data. As K grew, however, certain factors explained the

noise in the some of the data, which resulted in a nonempty relative maximum.

The previous experiments showed that (1) the ls algorithm tended to out-

perform the other submodular maximization algorithms on problems of a linear-

Gaussian nature and (2) all algorithms substantially outperformed their worst

case guarantees in practice. Iyer et al. [2013] also observed both of these char-

acteristics on synthetic and real-world data that substantially differed from our

linear-Gaussian data. While the results are data dependent, we note that the ls

algorithm can empirically explore a larger fraction of the solution space by itera-

tively adding/removing elements from the solution set, while the other algorithms

make a single greedy pass over the solution elements. The drawback, however,

is that the ls algorithm has a larger upper bound on the number of submodular
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Figure 4.8: Fraction of maximizations that obtained the relative maximum value
for the submodular maximization algorithms listed in Table 4.1, where for each
K, the relative maximum is the maximum value obtained among all algorithms.
The factors, A, were fixed to the (left) true generating values and (right) a
random sample from a zero-mean truncated Gaussian with unit variance. The
fractions do not sum to one because multiple maximization algorithms can obtain
the same maximum value.

queries. This upper bound is loose: in the next paragraph we show that it tends

to scale subquadratically in practice.

We examined the empirical ls algorithm complexity by generating data from

the nonnegative linear-Gaussian model with N = 1000, D = 1000, σX = 1.0 and

performing 10 inference iterations for varying K values. By precomputing ΦΦT

and maintaining an auxiliary vector of K weights, we can evaluate Eq. 4.20 in

constant time when adding/removing elements to the solution set. Figure 4.9

shows the number of constant-time queries to the submodular function vs the

size of the ground set, K. For large K (roughly K > 100), the ls algorithm

appeared to scale subquadratically, while for K ≤ 100 a linear fit described the

data well. NB: most latent feature modeling applications have K ≤ 100. The

other submodular optimization algorithms listed in Table 4.1 have a constant

number of queries to the submodular function: 2K2 for the greedy lg algorithms

and 2K for the non-greedy lg algorithms.

As discussed in Appendix A.4, the ls algorithm tended to scale better than

its worst-case complexity because Feige et al. [2011] derived the complexity by

assuming each add/remove step increases the objective function by the minimum

possible amount. In practice, the objective function is either not improved or
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Figure 4.9: Number of O(1) updates per ls optimization using data generated
from the nonnegative linear-Gaussian model with N = 1000, D = 1000, σX = 1.0.
(Left) Klog K fit to the entire data range, (Right) linear fit for K ≤ 100.

is increased by an amount that is several orders of magnitude larger than the

minimum possible amount.

4.7 MEIBP

Bringing together the components of the previous sections, we define the Max-

imization Expectation IBP (MEIBP) inference algorithm as specified in Algo-

rithm 3. Note that we use the ls algorithm from Feige et al. [2011] as it out-

performed the other submodular maximization algorithms in the previous sec-

tion. By maintaining auxiliary matrices ZTX and ZTZ, we can update q(A) in

O(K2
+D) operations after each Zn· update, yielding a per-iteration complexity of

O(NK2
+D) for the q(A) updates. By precomputing the quadratic pseudo-Boolean

weight matrix W from Eq. 4.14, a O(K2
+D) operation, we can maintain an aux-

iliary vector (aux in Algorithm 4) that keeps track of the net difference in the

objective function when the kth element is added/removed from the final solution

set. In turn each add/remove operation with the ls algorithm performs O(K+)

operations when finding the min/max element of the auxiliary vector, where the

ls algorithm performs O(1
ε
K+log (K+)) iterations: yielding a total per-iteration

complexity of O(NK2
+(D + 1

ε
log (K+))) for MEIBP.



4.7 MEIBP 50

Algorithm 3 The Maximization-Expectation IBP (MEIBP) inference algorithm for the
nonnegative linear-Gaussian model.

input : observed data X

initialize: set Z and A to random draws from their priors and determine q(A) from
Eq. 4.14

until convergence:

for each n ∈ [N ]

Zn· ← ls-algorithm(Z, n, q(A),X) (see Algorithm 4)

if Zn· changed:

update q(A) from Eq. 4.14

return Z, q(A)

Algorithm 4 The linear search algorithm from Feige et al. [2011] used for MEIBP inference.

input : feature assignment matrix Z, data index n, observed data X, and variational
distribution q(A)

initialize: W and ωn from Eq. 4.20

aux ← ωn

Kfinal ← K+\n

returnSet ← {}

if maxk∈[K+]

[
auxk − 1{mk\n=0}log (Kfinal + 1)

]
< 0:

return returnSet

iterate until returnSet does not change

iterate until maxk∈[K+]\returnSet

[
auxk − 1{mk\n=0}log (Kfinal + 1)

]
< ε

K+
:

newEl ← arg maxk∈[K+]\returnSet

[
auxk − 1{mk\n=0}log (Kfinal + 1)

]
returnSet ← returnSet ∪ newEl

Kfinal ← Kfinal + 1{mnewEl\n=0}

aux ← aux + W newEl·

iterate until mink∈returnSet

[
auxk − 1{mk\n=0}log (Kfinal)

]
> − ε

K+

removeEl ← arg mink∈returnSet

[
auxk − 1{mk\n=0}log (Kfinal)

]
returnSet ← returnSet \ removeEl

Kfinal ← Kfinal − 1{mremoveEl\n=0}

aux ← aux - W removeEl·

return: convert returnSet to binary vector of length K+
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4.8 Related Work: Scalable IBP Inference

Several proposals have been made for efficient inference with various latent feature

models, with most techniques focusing on linear-Gaussian IBP models. Each of

the techniques discussed below are iterative techniques, though the flavor of the

iteration is different: each iteration for a sampler produces one (correlated) sample

from the posterior of the model, while each iteration for the variational/MAP

approaches optimizes some objective function that improves an approximation of

the posterior. Table 4.3 summarizes the per-iteration complexity of the methods

discussed below, but we remind the reader to take into account the differences

between the inference methods when interpreting these complexities.

Doshi-Velez et al. [2009b] formulated a coordinate ascent variational inference

technique for IBP models (VIBP); variational inference is discussed in §2.3. This

method used the “stick breaking” formulation of the IBP, which maintained cou-

pled beta-distributed priors on the entries of Z—marginalizing these priors does

not allow closed-form MFVB updates. Unlike MEIBP inference, maintaining the

beta priors has the undesirable consequence that inactive features contribute to

the evidence lower bound and must be ignored when updating the variational

distributions. This was not a problem for Doshi-Velez et al. [2009b]’s finite

variational IBP, which computed variational distributions for a linear-Gaussian

likelihood with a parametric beta-Bernoulli prior on the latent features. The

per-iteration complexity for both methods is O(NK2
+D), which is dominated by

updating the variational distribution on the latent feature assignments.

Ding et al. [2010] used mixed expectation-propagation style updates with a

mean field variational Bayes type of inference, termed “power-EP,” to perform

variational inference for a nonnegative linear-Gaussian IBP model (INMF). The

expectation-propagation style updates are more complicated than standard mean

field variational Bayes updates and have per-iteration complexity O(N(K3D +

KD2)). Ding et al. [2010] motivated this framework by stating that the evi-

dence lower bound of a linear-Gaussian likelihood with a truncated Gaussian

prior on the latent factors is negative infinity. We note that this statement is

only true if the variational distribution is fixed to be Gaussian, however the free-

form variational distribution for their model is a truncated Gaussian, which has
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a well-defined evidence lower bound.

Doshi-Velez and Ghahramani [2009] presented a linear-time “accelerated”

Gibbs sampler for conjugate IBP models that effectively marginalized over the

latent factors (AIBP). The per-iteration complexity was O(N(K2 +KD)). This

is comparable to the uncollapsed linear-Gaussian IBP sampler (UGibbs) that

has per-iteration complexity O(NDK2) but does not marginalize over the la-

tent factors, and as a result, takes longer to mix. In terms of both complexity

and empirical performance, the accelerated Gibbs sampler is the most scalable

sampling-based IBP inference technique currently available for linear-Gaussian

IBP models. One constraint of the accelerated IBP is that it must be possible to

analytically integrate the latent factor distribution out of the joint probability,

which for instance, does not allow nonnegative priors on the latent factors.

Rai and Daume III [2011] introduced a beam-search heuristic for locating ap-

proximate MAP solutions to linear-Gaussian IBP models (BS-IBP). This heuris-

tic sequentially adds a single data point to the model and determines the latent

feature assignments by scoring all 2K+ latent feature combinations. The scoring

heuristic uses an estimate of the joint probability, P (X,Z) to score assignments,

which evaluates the collapsed likelihood P (X|Z) for all 2K+ possible assign-

ments: an expensive N3(K+ +D) operation, yielding a per-iteration complexity

of O(N3(K+ +D)2K+).

Broderick et al. [2013a] showed that MAP estimates of a linear-Gaussian IBP

model could be obtained by taking a zero-variance asymptotic limit of the model,

σX → 0 with the IBP concentration parameter, α, set to

α = exp

(−λ2

2σ2
X

)
(4.26)

for some constant λ > 0, resulting in a MAP objective function of the form

arg min
K+,Z,A

[
trace

(
(X −ZA)T (X −ZA)

)
+K+λ

2
]
, (4.27)

which they optimize by greedily minimizing the objective function for each latent

feature assignment, znk and then updating the latent factors to their conditional

expectation, E[A|Z,X] = A = (ZTZ)−1ZTX. Features are added by greedily



4.8 Related Work: Scalable IBP Inference 53

checking whether one new feature reduces the cost function for each observation,

where the new feature is Xn· − Zn·A for observation n. We refer to this algo-

rithm as BpMeans. In light of the K-means++ initialization routine [Arthur and

Vassilvitskii, 2007], Broderick et al. [2013a] propose an analogous initialization

routine that we refer to as BpMeans++ and describe in Algorithm 5. K-means++

Algorithm 5 The BpMeans++ initialization algorithm.

1. start by assigning every observation to the first feature, and let the first
feature be the mean of the data

2. recursively, for feature k > 1, calculate the distance from each observation
Xn· to its feature representation Zn·A for the current Z and A, and choose
an observation X i· with probability proportional to this distance squared

3. assign Ak· to be the chosen observation X i·

4. assign zmk for all m ∈ [N ] to optimize Eq. 4.27

specifies a similar initialization routine for the K-means algorithm and guaran-

tees that the final K-means objective function will be within a constant factor of

the optimal value. The BpMeans++ algorithm, while an empirically beneficial

contribution, currently does not imply any optimality guarantees. Determining

whether an initialization routine can provide an optimality guarantee for the Bp-

Means objective is currently an open question. The per-iteration complexity of

BpMeans is dominated by checking whether each znk value improves the objec-

tive function, which can be formulated as a O(KD) operation for each n, k pair,

yielding a per-iteration complexity of O(NK2
+D).

There are several IBP inference techniques that we do not consider here:

• Doshi-Velez et al. [2009a] proposed a parallelized IBP sampler that operates

via an approximate, loopy message passing scheme. We do not include this

inference method because (1) it is a different flavor than all other inference

techniques mentioned here as it uses distributed computation and (2) it is

very difficult to implement correctly, and the authors have not made their

experimental implementation publicly available.
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Table 4.2: Worst-case per-iteration complexity given a linear-Gaussian likelihood
model for N D-dimensional observations, K+ active latent features, and param-
eter ε.

Algorithm Iteration Complexity

MEIBP O(NK2
+(D + 1

ε log (K+)))

VIBP [Doshi-Velez et al., 2009b] O(NK2
+D)

AIBP [Doshi-Velez and Ghahramani, 2009] O(N(K2
+ +K+D))

BpMeans [Broderick et al., 2013a] O(NK2
+D)

UGibbs [Doshi-Velez and Ghahramani, 2009] O(NK2
+D)

BS-IBP [Rai and Daume III, 2011] O(N3(K+ +D)2K+)

INMF [Ding et al., 2010] O(N(K3
+D +K+D

2))

• Wood and Griffiths [2007] proposed a particle sampler based inference tech-

nique that can be applied to non-conjugate IBP models. However, a number

of papers have compared against this inference technique and found that it

performs erratically [Doshi-Velez et al., 2009b; Doshi-Velez, 2009; Rai and

Daume III, 2011].

• Griffiths and Ghahramani [2006] originally proposed a collapsed IBP sam-

pler in which the latent factors A are analytically integrated out of the

model and inference is performed solely on Z. This inference method scales

cubically in N and is not computationally feasible for N > 1000 [Doshi-

Velez et al., 2009b].

4.9 Inference Experiments

We evaluated the inference quality and efficiency of MEIBP inference on two syn-

thetic and three real-world datasets. We used the predictive likelihood estimates

and L2 error of held-out observations as our performance criteria and compared

MEIBP inference with the methods listed in Table 4.3 (the finite and infinite

VIBP are differentiated with an “f-” and “i-” prefix). A discussion of the predic-

tive likelihood estimates can be found in Appendix A.3.5. We used a truncated

Gaussian prior on the latent factors for UGibbs and INMF, and Gaussian pri-

ors for the AIBP, BpMeans, and variational methods. In our evaluations, we also
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included Schmidt et al. [2009]’s iterated conditional modes algorithm, which com-

putes a MAP estimate of a parametric nonnegative matrix factorization model:

X = BA+E, where B and A have exponential priors and E is zero-mean Gaus-

sian noise. We abbreviate this model “BNMF”; it has a per-iteration complexity

of O(N(K2
+ + K+D)), where K+ is the exact number of latent features, not an

upper bound. We also used MEIBP as an initialization routine for the AIBP, and

denote this inference method as “ME-AIBP.”

The VIBP and MEIBP inference methods specify a maximum K value, while

the sampling methods and BpMeans are unbounded.1 Therefore, we also included

truncated versions of the sampling methods (indicated by a “t-” prefix) for a fairer

comparison and used the bounded BpMeans variant, where the number of latent

features cannot exceed a specified bound. We centered all input data to have

a 0-mean and unit variance for the models with 0-mean Gaussian priors and

a 0-minimum and unit variance for nonnegative models. All inferred matrices

were initialized randomly from their respective priors. Following Doshi-Velez and

Ghahramani [2009], we fixed the hyperparameters σX and σA to 3
4
σ, where σ

was the standard deviation across all dimensions of the data, and set α = 3.

We ran each algorithm until the multiplicative difference of the average training

log-likelihood differed by less than 10−4 between blocks of five iterations with

a maximum runtime of 36 hours. Our experiments used optimized MATLAB

implementations of the algorithms, as provided by the respective authors,2 on

3.20 GHz processors.

4.9.1 Synthetic Data Experiments: Predictive Likelihood

and L2 Error

We created high-noise synthetic datasets in the following way: (1) sample zn,k ∼
Bernoulli(p = 0.4), (2) generateA withK random, potentially overlapping binary

factors, (3) let X = ZA + E, where E ∼ N(0, 1). We evaluated the predictive

likelihood and L2 error on a held-out portion of 20% of the dimensions from the

1NB: the sampling methods sample from the true unbounded posterior while the BpMeans
uses a heuristic rule to add new features.

2Except the BpMeans algorithm, which the authors did not publicly release, and we there-
fore wrote the inference procedure ourselves.
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Table 4.3: Summary of inference algorithms used in these experiments. The
“Factor prior” column shows the prior distribution specified for the latent factors,
where “G” is Gaussian, “TG” is truncated Gaussian, and “Exp” is exponential.

Algo-
rithm

Reference Description
Factor
prior

Iteration
complexity

meibp this work
maximization
expectation IBP

TG
O(NK2

+(D +
1
ε log (K+)))

me-aibp this work
maximization
expectation IBP
initialization for AIBP

TG +
G

O(NK2
+(D +

1
ε log (K+)))

i-vibp
Doshi-Velez et al.
[2009b]

unbounded variational
IBP

G O(NK2
+D)

f-vibp
Doshi-Velez et al.
[2009b]

finite variational IBP G O(NK2
+D)

aibp
Doshi-Velez and
Ghahramani [2009]

unbounded accelerated
gibbs sampling

G
O(N(K2

+ +
K+D))

t-aibp
Doshi-Velez and
Ghahramani [2009]

truncated accelerated
gibbs sampling

G
O(N(K2

+ +
K+D))

bpmeans
Broderick et al.
[2013a]

0-variance MAP
estimate

G O(NK2
+D)

ugibbs
Doshi-Velez and
Ghahramani [2009]

unbounded uncollapsed
Gibbs sampling

G O(NK2
+D)

t-ugibbs
Doshi-Velez and
Ghahramani [2009]

truncated uncollapsed
Gibbs sampling

TG O(NK2
+D)

bnmf
Schmidt et al.
[2009]

parametric matrix
factorization with
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last half of the data.

Figure 4.10 shows the change of the test log-likelihood and L2 error over time

for a small dataset with N = 500, D = 500, K = 20 (2.5 × 105 total obser-

vations), while Figure 4.11 shows a similar plot for a much larger dataset with

N = 105, D = 103, K = 50 (108 total observations). We initialized all models with

the true number of latent features. The error regions display the standard devi-

ation over five random restarts.1 The BS-IBP and INMF methods were removed

1Over half of the tests from the VIBP methods converged after one iteration to a very poor
local optimum. We did not include these outcomes in any of our experiments.



4.9 Inference Experiments 57

10
1

10
2

10
3

−3.5

−3

−2.5

x 10
4

seconds

te
st

lo
g
-l
ik
el
ih
o
o
d

me−aibp

aibp
t−aibp

bnmf
meibp

t−ugibbs
ugibbs

i−vibp

f−vibp

bpmeans

10
1

10
2

10
3

1

1.2

1.4

1.6

1.8

2

x 10
4

seconds

t
e
s
t
L
2
e
r
r
o
r

t−aibp

t−ugibbs

ugibbs

aibp

meibp
me−aibp

bnmf

bpmeans

i−vibp
f−vibp

Figure 4.10: Evolution of test log-likelihood (left) and L2 error (right) for a
synthetic dataset of size N = 500, D = 500, K = 20.

from our experiments following the synthetic dataset tests as both methods took

at least an order of magnitude longer than the other methods: in 36 hours, the

BS-IBP did not complete a single iteration on the small dataset, and the INMF

did not complete a single iteration on the large dataset.
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Figure 4.11: Evolution of test log-likelihood (left) and L2 error (right) for a
synthetic dataset of size N = 105, D = 103, K = 50.

BpMeans converged quickest among the IBP models, however its maximum

likelihood approach caused it to get stuck in a relatively poor local optima for

both the small and large datasets. The MEIBP, on the other hand, converged
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to the same nearly the same test-likelihood as the uncollapsed samplers, but an

order of magnitude faster. Its advantage over the BpMeans in this situation

stemmed from its ability to maintain uncertainty about the model parameters

through its variational distributions, i.e. it is not a fully MAP approach and was

less proned to local optima. BpMeans remained virtually unchanged after its

BpMeans++ initialization (Algorithm 5), while the MEIBP progressed to better

solutions following its random initialization. The MEIBP worked well as an

intialization for AIBP: the mean predictive likelihood and L2 error of ME-AIBP

were best among all inference techniques for the small and large datasets. The

AIBP was unable to obtain the same performance from a random initialization.

Though BNMF specified exponential priors on the factorized matrices, it was

able to perform relatively well by inferring bimodal matrices similar to the gener-

ated data matrices, see Figure 4.12. Since the exponential priors were not binary,

however, linearly combining the factorized matrices resulted in a stronger aver-

aging effect than the IBP models. As shown in Figure 4.13, the BNMF assigned

average values to more observations in comparison to MEIBP, which also held

true for UGibbs, and resulted in a Gaussian-like distribution of values with a

smaller variance than the IBP models. For the small synthetic dataset, this av-

eraging caused BNMF to perform worse than MEIBP and UGibbs. For certain

datasets, however, the flexibility in the prior that leads to this type of averaging

may be beneficial.

For the small synthetic dataset, the VIBP methods converged quicker than

the samplers but had trouble escaping local optima. Doshi-Velez et al. [2009b]

noted a similar result: the variational techniques struggled on smaller datasets,

while the sampling techniques tended to perform well. The authors also showed

that the variational techniques tended to outperform the sampling techniques on

larger data, though they did not compare against AIBP. Our experiments agree

with both of these observations, and we add that the AIBP outperformed the

variational methods on the synthetic dataset with 108 total observations. For the

large synthetic dataset, BNMF converged quicker than the IBP models, but this

time MEIBP was the only IBP model to outperform BNMF in the given time

limit. The UGibbs methods and variational techniques got stuck in relatively

poor local optima.
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bution that weakly emulates a Bernoulli (the true factorized matrix distributions).

0 1 2 3 4 5 6
0

1

2

3

4

5

6

7
x 10

4

co
un

ts

true denoised data
bnmf denoised data
meibp denoised data

BNMF assigned more data average values

denoised data values

Figure 4.13: Comparison of the inferred denoised values from the N = 500, D =
500, K = 20 simulated data experiment. Note the BNMF displays a Gaussian-
like distribution of values with a smaller variance in comparison with the MEIBP
distribution.



4.9 Inference Experiments 60

These synthetic data experiments showed that the MEIBP inference per-

formed comparably or better than other MAP, sampling, and variational inference

techniques on inferring noisy, linearly-combined factors. Furthermore, if poste-

rior samples are desired, the MEIBP can be used as a structured initialization

procedure for samplers. Our real data experiments in the next subsection fur-

ther support these conclusions. We were surprised by the BNMF performance

on these synthetic datasets, and due to its simplicity of implementation and use,

practitioners that do not require a “latent features” interpretation of their model

should consider this inference technique for matrix factorization.1

4.9.2 Real Data Experiments: Predictive Likelihood and

L2 Error

Table 4.4 summarizes the real-world datasets used in our experiments. The Piano

and Faces datasets are dense real-valued datasets, whereas the Flickr dataset is a

sparse binary dataset (0.81% filled). The Piano and Flickr dataset were previously

used for real data experiments by Doshi-Velez and Ghahramani [2009] and Doshi-

Velez et al. [2009a], while the Faces dataset is similar to the original Yale faces

dataset explored by Doshi-Velez and Ghahramani [2009] and Doshi-Velez et al.

[2009b], but it provided more testing data than the original dataset. For the Piano

and Flickr datasets, we evaluated the predictive likelihood on a held-out portion

of 20% of the dimensions from the last half of the datasets.2 The Faces dataset

had roughly sixty-four facial images of thirty-eight subjects, and we removed the

bottom half of five images from each subject for testing.

Figure 4.14 shows the test log-likelihood and L2 error evolution on the Pi-

ano dataset for all inference models/methods for initialization K = {10, 25, 50}
(except the uncollapsed IBP sampling methods, which were initialized randomly

from the IBP prior with α = 3 and are shown in the K = 50 plot). The error

bars indicate the standard deviation in performance over the five best random

restarts from eight trials.

1At the time of this writing, a MATLAB BNMF implementation is available from the author
at http://mikkelschmidt.dk/uploads/media/bayesnmf.zip.

2For the Flickr data, we required each column to have at least five non-zero entries: this
requirement removed 92 dimensions.

http://mikkelschmidt.dk/uploads/media/bayesnmf.zip
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Table 4.4: Summary of real-world datasets.

Dataset Size (N ×D) Details

Piano [Poliner and Ellis, 2006] 16000× 161 DFT magnitudes of piano recordings

Faces [Lee et al., 2005] 2414× 32256 face images with various lightings

Flickr [Kollar and Roy, 2009] 25000× 1500 binary image-tag indicators

Overall, the Piano results were similar to the small synthetic dataset. The

BNMF converged much faster than the IBP models to very good solutions, and

the MEIBP and BpMeans performed best among the IBP models in terms of

runtime, test log-likelihood, and L2 error. The strong performance of MEIBP

and BNMF likely stems from the inherent nonnegativity of the DFT magnitudes,

and it appears that the Piano dataset was amenable to MAP solutions as demon-

strated by the strong performance of all MAP techniques (BNMF, BpMeans, and

MEIBP).

We noticed interesting behavior in the K = 50 plots: the unbounded AIBP

sampler eventually performed comparable to the MAP approaches, but it took an

order of magnitude longer to obtain similar results. For the K = 50 experiments,

the BNMF quickly obtained very good results, but as inference continued, it

overfit to the training data because it continued to optimize all K = 50 features

to the training data (it is a parametric model). The MEIBP, on the other hand,

began with K = 50, and for some runs, it removed unneeded features and finished

with circa K = 45 features.

Similar to the synthetic dataset tests, the ME-AIBP technique obtained the

best predictive likelihood and L2 performance among all tested methods. This

technique attests to the strength of using a structured initialization routine for

sampling techniques. The MEIBP was itself initialized randomly, but it may be

beneficial to initialize it using the BpMeans++ initialization routine. We leave

this question for future research.

The uncollapsed Gibbs techniques performed poorest among all methods. The

Piano dataset, and indeed all datasets in this subsection, were too large for un-

collapsed Gibbs sampling to be effective. The uncollapsed sampler draws feature

assignments from a massive combinatorial state space, and then conditioned on
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these features, it sampled factors from a massive real-valued state space. When

initialized randomly, the uncollapsed sampler was consistently unable to escape

poor local optima. We experimented with initializing the uncollapsed sampler

with MEIBP and obtained similar result to ME-AIBP. We did not formalize

these experiments, however, so we only mention it as a possibly useful inference

technique for large combinatorial models.

Figure 4.16 shows the inference results for the Faces dataset for the K =

{10, 25, 50} initialization. BNMF is not present on any of these plots as its

predictive likelihood results hovered around −6× 106. This resulted because the

update steps in the BNMF technique updated the factorized matrices for each of

the dimensions of the data, and removing a sequence of half of the dimensions

from the images caused BNMF to simply return mean estimates of the training

data for the test data predictions. We tried reordering the BNMF updates to

avoid this result but did not have success. BpMeans is not present for the K = 50

plot as it experienced overfitting problems with higher K bounds and produced

predictive-likelihood results that hovered around −4.7× 106.

With faces from 38 different humans under various lighting conditions, all

IBP inference techniques inferred features that focused on lighting conditions

more than facial expressions or facial features. This resulted for a few reasons:

(1) the lighting effects caused greater variation in the pixel values of the images

compared to the facial expressions and features (2) the Faces dataset contained

only one facial pose (front-center) for each of the thirty-eight subjects under sixty-

four different lighting conditions, since the lighting conditions were the same for

all subjects, they provided a parsimonious representation of the data. Figure 4.15

shows typical inference results for MEIBP, and the sampling/variational results

looked very similar, i.e. the features emphasized the lighting effects instead of

the facial features.

K = 10 was too small of a bound to capture the various lightings in the faces

dataset. All inference techniques performed relatively poorly with this bound

and inferred vague left, right, top, or bottom shadow features. The BpMeans++

initialization routine worked well as it initialized the latent factors to actual faces

with different lighting effects. The inference procedure then softened the factors

so they would better fit the observed data. With K = 50, however, the number



4.9 Inference Experiments 63

10
1

10
2

10
3

10
4

−4

−3.5

−3

−2.5

x 10
5

seconds

te
st

lo
g
-l
ik
el
h
o
o
d

me−aibp

bnmf

f−vibp
meibp

t−ugibbs
t−aibp

i−vibp

bpmeans

10
1

10
2

10
3

10
4

1

1.5

2

2.5
x 10

5

seconds

te
st
L 2

bnmf

bpmeansmeibp

t−ugibbs

t−aibp

me−aibp

i−vibp
f−vibp

10
1

10
2

10
3

10
4

−3.4

−3.2

−3

−2.8

−2.6

−2.4
x 10

5

seconds

te
s
t
lo
g
-l
ik
e
lh
o
o
d

t−ugibbs

t−aibp

me−aibp

bnmf
i−vibp

f−vibp

meibp

bpmeans

10
1

10
2

10
3

10
4

1

1.5

2

x 10
5

seconds

te
st
L 2

er
ro
r

t−ugibbs

f−vibp
t−aibp

i−vibp

bpmeans

meibp me−aibp
bnmf

10
1

10
2

10
3

10
4

−4.5

−4

−3.5

−3

−2.5

−2
x 10

5

seconds

te
st

lo
g
-l
ik
el
ih
o
o
d i−vibp

aibp

me−aibp

bnmf

meibp

t−aibp

f−vibp

t−ugibbs

ugibbs

bpmeans

10
1

10
2

10
3

10
4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6
x 10

5

seconds

t
e
s
t
L
2

t−ugibbs

i−vibp

ugibbs

meibp
aibp

me−aibp

t−aibp

f−vibp

bpmeans

bnmf

Figure 4.14: Evolution of test log-likelihood (left) and L2 error (right) for the
piano dataset. The top row has K = 10 initialization, the middle row has K = 25
initialization, and the bottom row has K = 50 initialization. The K = 50
initialization plots also include the unbounded samplers.
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true data observed data reconstructed data feature 1 feature 2 feature 3 feature 4

Figure 4.15: Example Faces inference result for the MEIBP. From left to right:
True face observation from the Faces data, input data (bottom half of the image
was masked), reconstructed data, four latent factors.

of factors exceeded the distinct number of lighting effects and the model began

at a poor optimum, where factors were overfit to specific data.

With K = 25 and K = 50, the MEIBP technique struggled to improve upon

its first round of optimizations. By iteratively inspecting the MEIBP factors and

feature assignments throughout its inference, we believe these results were due to

the nonnegative prior on the latent factors. After its first optimization round, the

MEIBP initially expressed the data via nonnegative shadow factors, and in sub-

sequent optimization rounds it added or removed features to improve its shadow

representations of the training data and updated its factors accordingly. How-

ever, since it could not create negative factors, adding/removing features from an

observation added/removed mass from the associated factors, which inversely af-

fected other observations. The Gaussian priors for the variational and accelerated

Gibbs methods allowed the observations to add features that removed mass from

the associated factors, and in turn, this gave them more flexibility to overcome

local optima in comparison to the nonnegative factors.

Figure 4.17 shows the inference result on the binary Flickr dataset: a meta-

data dataset of image label tags. The Flickr dataset was sparse (0.81% filled),

and the inference challenge was to infer non-zero values for the test data. Like

the previous datasets, the Flickr dataset was normalized to unit variance and zero

mean for the models with Gaussian priors on the latent factors and unit variance

and zero minimum for models with nonnegative factor priors. In this case, this

normalization led to observed image tags taking values that were greater than

one and unobserved tags taking values that were either zero or negative. All
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Figure 4.16: Evolution of test log-likelihood (left) and L2 error (right) for the
Face dataset. The top row has K = 10 initialization, the middle row has K = 25
initialization, and the bottom row has K = 50 initialization. The K = 50
initialization plots also include the unbounded samplers.



4.9 Inference Experiments 66

inference techniques demonstrated greater variance in the test likelihood and L2

error for the Flickr dataset, indicating that the initialization played a substantial

role in the final inference results. For reference, a trivial baseline of using 0 for

all test data yields an L2 error of 3.157× 106.

For all K initialization values, the IBP inference methods typically had one

active feature for 1000-2000 observations and the rest of the features were active

for less than fifty observations. This occurred because the observations were bi-

nary valued and one latent feature could express the majority of the data as the

corresponding latent factor equalled the magnitude of the observed data. The

remaining latent features were typically active when the main latent feature was

not active and the associated factor magnitudes were smaller than the factor val-

ues corresponding to the main factor. In other words, the less popular latent

features were used to capture the boundary-case image tags, where a given obser-

vation could activate a number of smaller factors to reflect its belief that a given

image tag was active. By increasing the K bound, all IBP methods had a greater

resolution to describe the inferred belief of a given image tag being active, and as

a result, all methods (modulo the uncollapsed Gibbs sampler) performed better

as K increased.

For the ME-AIBP method, the initial Gibbs sweep changed over half of the

feature assignments for K = 10, which resulted in a substantial degradation in

predictive likelihood and L2 error. For K = 50, the initial Gibbs sweep changed

less than five percent of the latent feature assignments, and consequently, the

ME-AIBP inference method obtained the best predictive-likelihood and L2 error

across all K values and inference techniques. As in this case, examining the

agreement between the final MEIBP and initial sampling results may indicate

whether the MEIBP provides a useful initialization.

UGibbs performed erratically in L2 error yet consistently (but poorly) in pre-

dictive likelihood. This occured because UGibbs obtained at least one reasonable

sample within each block of ten samples. The test likelihood estimated by aver-

aging these samples (see Appendix A.3.5) was consistent because the single good

sample dominated the average. The UGibbs predictive likelihood then remained

consistent when averaged over the five randomly-restarted trials. At any given

sampling step, however, one of the five UGibbs runs had a very poor sample that
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dominated the average and led to poor L2 performance. We note that a Gaussian

likelihood is not ideal for binary data, and we expect that specifying a model

that uses one of the binary likelihoods mentioned in the next chapter would help

improve the inference results on the Flickr dataset.

In the above experiments, the MEIBP often exhibited a sudden convergence

whereby it obtained a local optimum, and the ls-algorithm did not change any

Z assignments. This is a characteristic of using hard assignments with a greedy

algorithm: at a certain point, changing any latent feature assignments decreased

the objective function. This abrupt convergence, in combination with the speed

of the submodular maximization algorithm, helped the MEIBP consistently con-

verge faster than the sampling and variational IBP methods. Furthermore, the

submodular maximization algorithm converged to local optima that were com-

parable or better than the sampling or variational results, though at the cost of

only obtaining a MAP solution. Like the variational methods, it maintained a

distribution over A that prevented it from getting stuck in local optima early

on, and like the sampling methods, the MEIBP used hard Z assignments to take

larger steps in the inference space and obtain better optima for some datasets.

Of course, the MEIBP is not the holy grail, but we view it as evidence that sub-

modular optimization can be exploited for fast inference in latent feature models

that obtains solutions comparable to samplers or variational techniques.

4.9.3 Finding the True Number of Latent Features

An ostensible advantage of using nonparametric priors is that a user does not need

to specify the multiplicity of the prior parameters. Rather, the user specifies

a stochastic process that serves as a prior on an unbounded parameter space.

Clever sampling techniques such as slice sampling and retrospective sampling

allow samples to be drawn from these nonparametric priors, c.f. Teh et al. [2007]

and Papaspiliopoulos and Roberts [2008].

As mentioned previously, variational methods are not directly amenable to

Bayesian nonparametric priors as the variational optimization cannot be per-

formed over an unbounded prior space. Instead, variational methods must spec-

ify a maximum model complexity (parameter multiplicity). Several heuristics



4.9 Inference Experiments 68

10
1

10
2

10
3

10
4

−4.98

−4.96

−4.94

−4.92

−4.9

x 10
6

seconds

te
st

lo
g
-l
ik
el
ih
o
o
d

bnmf

f−vibp

i−vibp
meibp

t−ugibbs

me−aibp

t−aibp

bpmeans

10
1

10
2

10
3

10
4

3

3.02

3.04

3.06

3.08

3.1
x 10

6

seconds

t
e
s
t
L
2
e
r
r
o
r bpmeans

me−aibp

bnmf

i−vibp

f−vibp

t−aibp

t−ugibbs

meibp

10
1

10
2

10
3

10
4

−4.95

−4.9

−4.85

−4.8

x 10
6

seconds

te
s
t
lo
g
-l
ik
e
li
h
o
o
d

f−vibp

me−aibp

meibp

i−vibp

bpmeans

t−ugibbs

t−aibp

bnmf

10
1

10
2

10
3

10
4

2.9

2.95

3

3.05

3.1

x 10
6

seconds

te
st
L 2

er
ro
r

me−aibp

meibp

bnmf

bpmeans

f−vibpt−ugibbs

i−vibp

t−aibp

10
1

10
2

10
3

10
4

−5

−4.95

−4.9

−4.85

−4.8

−4.75
x 10

6

seconds

te
s
t
lo
g
-l
ik
e
li
h
o
o
d

bnmf

bpmeans

meibp

me−aibp

t−aibp

aibp

f−vibp

i−vibp

ugibbs
t−ugibbs

10
1

10
2

10
3

10
4

2.85

2.9

2.95

3

3.05

3.1

x 10
6

seconds

t
e
s
t
L
2
e
r
r
o
r

f−vibp
i−vibp

bpmeans

meibp

aibp

bnmf

t−aibp

me−aibp

Figure 4.17: Evolution of test log-likelihood (left) and L2 error (right) for the
Flickr dataset. The top row has K = 10 initialization, the middle row has
K = 25 initialization, and the bottom row has K = 50 initialization. The
K = 50 initialization plots also include the unbounded samplers.
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have been proposed to address this limitation: Wang and Blei [2012a] sampled

from the variational distribution for the local parameters—which included sam-

pling from the unbounded prior—and used the empirical distributions of the local

samples to update the global parameters, while Ding et al. [2010] simply started

with K+ = 1 and greedily added features. We did not address these techniques

in this work as the MEIBP performed competitively with the unbounded sam-

pling techniques without employing these types of heuristics. Furthermore, here

we demonstrate that the MEIBP can robustly infer the true number of latent

features when the K+ bound is greater than the true number of latent features.

For this experiment, we generated the binary images dataset used in Griffiths

and Ghahramani [2005], where the dataset, X, consisted of 2000 6 × 6 images.

Each row of X was a 36 dimensional vector of pixel intensity values that was

generated by using Z to linearly combine a subset of the four binary factors

shown in Figure 4.18. Gaussian white noise, N(0, σX), was then added to each

image, yielding X = ZA + E. The feature vectors, Zn· were sampled from a

distribution in which each factor was present with probability 0.5. Figure 4.19

shows four of these images with different σX values.

Figure 4.18: The four binary latent factors used in the sensitivity analysis in this
section. The white squares are ones and the dark squares are zeros.

We initialized the MEIBP with K = 20, σX=1.0, σA = 1.0, α = 2, µ̃kd ∼
TN(0, 0.05) (variational factor means), σ̃kd ∼ TN(0, 0.1) (variational factor stan-

dard deviations), znk ∼ Bernoulli(1
3
). With this initialization, we tested the

MEIBP robustness by performing MEIBP inference on X for σX = 0.1, . . . , 1.0

in 100 evenly spaced increments with all hyperparameters and algorithm options

unchanged during the experiment. MEIBP convergence was determined in the

same way as in the previous experimental section, i.e. when the mean of the

test likelihood between blocks of five iterations differed by a relative factor of less

than 10−4. Figure 4.20 (left) shows a histogram of the final number of MEIBP

features (Ktrue = 4) and Figure 4.20 (right) shows the final number of MEIBP
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features as a function of σX .

Figure 4.19: Example data used in the sensitivity analysis. Each column contains
the same combination of latent factors, where the top row has a data noise term
of σX = 0.1, the middle row has σX = 0.5, and the bottom row has σX = 1.0.

These results indicate that the regularizing nature of the IBP prior tends to

lead to the correct number of latent features even when the K+ bound is much

larger than the true K+. Furthermore this experiment indicates that MEIBP

inference is robust to model noise, at least, for the simple data used in this

experiment. At a medium level of data noise, the inference occasionally finished

with K+ = 3, which resulted from two true latent factors collapsing to the same

inferred latent feature. Once this occurred, MEIBP did not have a mechanism

for splitting the features. For σX comparable to the latent factors, σX ≥ 0.9,

MEIBP often inferred “noise features,” which were essentially white noise. These

features were typically active for less than 4% of the data instances.

4.10 Chapter Summary

In this chapter we used the IBP submodularity results of Chapter 3 in combina-

tion with Kurihara and Welling [2008]’s ME framework to perform approximate

MAP inference via a sequence of submodular maximizations for each observation’s

feature assignments. Our key insight was to exploit the submodularity inherent

in the evidence lower bound formulated in §4.2, which arose from the quadratic

pseudo-Boolean component of the linear-Gaussian model. We explored various
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Figure 4.20: Final feature count (K+ value) for MEIBP inference where Ktrue = 4
for the binary image data with K+ initialized to 20 for σX = 0.1, . . . , 1.0 in 100
evenly spaced increments with all hyperparameters and algorithm options fixed
during the experiment. (Left) histogram of final K+ values. (Right) final K+

values as a function of σX .

submodular optimization algorithms and chose the linear search method from

Feige et al. [2011] as it performed best on our controlled experiments. MEIBP in-

ference converged faster than competing IBP methods and obtained comparable

solutions on various datasets. A simple, documented, and supported MATLAB

implementation of MEIBP is available at https://github.com/cjrd/MEIBP, and

the less-simple, undocumented experimental code used in this section is available

at http://mlg.eng.cam.ac.uk/~creed/.

https://github.com/cjrd/MEIBP
http://mlg.eng.cam.ac.uk/~creed/


Chapter 5

Log-Submodular Latent Feature

Models

In this chapter we outline a number of models that can benefit from the submod-

ularity results of this thesis. Specifically, we show certain forms of the following

types of models are log-submodular for each observation’s feature assignments:

• Sparse matrix factorization models

• Latent attribute models for network data

• Leaky, noisy-or model for binary data

We do not specify an exact inference framework for these models as we did with

the linear-Gaussian model in the previous chapter. Rather, we show the joint-

probability of these models is log-submodular for each observation’s feature as-

signments and discuss various inference frameworks in §5.4.

5.1 Sparse Matrix Factorization Models

We can generalize the IBP linear-Gaussian model studied in the previous chapter

by allowing the factor loadings to take on nonnegative weights and specifying an

arbitrary nonnegative prior on the factors. This class of sparse matrix factoriza-
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tion models has the following generative process:

Z|α, β ∼ IBP(α, β) (5.1)

W |θ1 ∼ H1(θ1) (5.2)

A|θ2 ∼ H2(θ2) (5.3)

Xn·|σX ∼ N ((W n· �Zn·)A, σXI) , (5.4)

where Hi, i = {1, 2} are nonnegative distributions with parameters θi, i = {1, 2},
W is an N ×K nonnegative weight matrix, and � represents the element-wise

product. This class of sparse matrix factorization models yields “infinite” in-

dependent component analysis and factor analysis models by selecting the ap-

propriate nonnegative priors on the factors and factor loadings [Knowles and

Ghahramani, 2007]. The joint probability of this model factorizes as

p(Z,X,WA|θ) = p(X|Z,A,W ,θ)p([Z]|θ)p(A|θ)p(W |θ), (5.5)

where θ represents the model parameters. Since we know that log (p([Z]|θ)) is

a submodular function for each observation’s feature assignment and W and A

only depend on Z through its K+ selection, all that remains is to show that

p(X|Z,A,W ,θ) is log submodular for each observation’s feature assignments.

log (p(X|Z,A,W ,θ)) =
−1

2σ2
X

N∑
n=1

||Xn· − (W n· �Zn·)A|| −
ND

2
log
(
2πσ2

X

)
(5.6)

which is a quadratic pseudo-Boolean function of Zn· with fixed W ,A. From

Theorem 1, a quadratic pseudo-Boolean function is submodular if and only if the

weight matrix is nonpositive. Since we specifiedA to be nonnegative, the negative

scalar −1
2σ2

X
and nonnegative weights W ensure that the quadratic component,

(Zn· �W n·)AA
T (Zn· �W n·)

T is nonpositive. Therefore the joint probability

of this class of sparse matrix factorization models is log-submodular for each

observation’s feature assignments.
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5.2 Latent Attribute Model for Network Data

Palla et al. [2012] defined an infinite latent attribute model (ILA) for network

data that takes the form of unweighted, undirected graphs, where the observed

data is a binary N ×N adjacency matrix. ILA assumes each observation in the

network has a set of latent features, and if an observation has a specific latent

feature, then the object is assigned to a subcluster of that feature. ILA then uses

weights between the subclusters of each feature to determine the probability of a

link between any two observations.

Palla et al. [2012] use the following intuitive example to motivate this model:

consider a network of individuals in a university, where a link between two indi-

viduals denotes a friendship or acquaintance. Here, the features could indicate

whether a student “plays football” or “belongs to a college.” The features could

then be divided into many different subclusters: “plays football for team X,”

“belongs to college Y,” etc. In ILA, the probability of interaction for each pair

of students depends on their subcluster assignments. Formally, the generative

model is as follows:

Z|α ∼ IBP(α) (5.7)

c(k)|γ ∼ CRP(γ) (5.8)

wkst|σw ∼ N(0, σw) (5.9)

rij|Z,C,W ∼ Bernoulli

(
σ

(∑
m

zimzjmw
m
cmi c

m
j

+ s

))
(5.10)

where R is the observed N × N binary adjacency matrix, wkst is the affinity

weight between subcluster s and subcluster t within feature k, ck is the subclus-

ter assignments of all observations with feature k, and Z is a binary N × K+

feature assignment matrix. This probabilistic model is log-submodular for each

observation’s feature assignment if we require the subcluster weights to be non-

negative. Nonnegative weights imply that subclusters can only express an affinity

for each other (nonnegative subcluster weights), not a repulsion (negative sub-

cluster weight). We use the moniker pILA to refer to the positive-weight variant

of ILA. We prove the submodularity of pILA in the remainder of this section.
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To show the log-submodularity of pILA we only need to show that the like-

lihood is a log-submodular function of each observation’s feature assignments

because the IBP prior is log submodular, and the other probabilistic components

only depend on Z through the K+ selection. The log-likelihood of pILA is

log (P (R|Z,C,W )) =
N∑
i=1

N∑
j=1

−rijlog

(
1 + exp

(
−

K+∑
k=1

zikzjkw
k
cki c

k
j
− s
))

+(1− rij)log

1− 1

1 + exp
(
−∑K+

k=1 zikzjkw
k
cki c

k
j
− s
)
 ,

(5.11)

where for a particular Zn·, the objective function is

F(Zn·) =

N∑
j=1

−rnj log

1 + exp

− K+∑
k=1

znkzjkw
k
cknc

k
j
− s


+ (1− rnj)log

1− 1

1 + exp
(
−∑K+

k=1 znkzjkw
k
cknc

k
j

− s
)


∑
j∈[N ]\n

−rjnlog

1 + exp

− K+∑
k=1

znkzjkw
k
ckj c

k
n
− s


+ (1− rjn)log

1− 1

1 + exp
(
−∑K+

k=1 znkzjkw
k
ckj c

k
n
− s
)
 , (5.12)

where the data and affinity weight indices is the key difference between the

first and second summations. Since both summations have the same form and

nonnegative combinations of submodular functions are submodular, we only need

to show the following function is submodular to prove the submodularity of F:

Hj(Zn·) =− rnjlog

(
1 + exp

(
−

K+∑
k=1

znkzjkw
k
cknc

k
j
− s
))

+ (1− rnj)log

1− 1

1 + exp
(
−∑K+

k=1 znkzjkw
k
cknc

k
j
− s
)
 (5.13)
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for some arbitrary but specific index j. For set An = {i : zni = 1}, we can define

the equivalent set function:

Hj(Zn·) = Gj(An) =− rnjlog

(
1 + exp

(
−
∑
k∈An

zjkw
k
cknc

k
j
− s
))

+ (1− rnj)log

1− 1

1 + exp
(
−∑k∈An zjkw

k
cknc

k
j
− s
)
 .

(5.14)

We use the definition of submodularity to show G(An) is submodular by examining

cases rnj = 0 and rnj = 1. We use the following convenience function for the below

proof:

dj(An) =
∑
k∈An

zjkw
k
cknc

k
j

+ s (5.15)

For rnj = 0 the definition of submodularity yields the following inequality for sets

An ⊆ Bn ⊆ [K+] and element e ∈ [K+] \Bn:

log

(
1− (1 + exp (−dj(An ∪ {e})))−1

1− (1 + exp (−dj(An)))−1

)
≥ log

(
1− (1 + exp (−dj(Bn ∪ {e})))−1

1− (1 + exp (−dj(Bn)))−1

)

log

(
exp (dj(An)) + 1

exp (dj(An ∪ {e})) + 1

)
≥ log

(
exp (dj(Bn)) + 1

exp (dj(Bn ∪ {e})) + 1

)
(exp (dj(Bn ∪ {e})) + 1) (exp (dj(An)) + 1) ≥ (exp (dj(Bn)) + 1) (exp (dj(An ∪ {e})) + 1)

By expanding dj(An ∪ {e}) to dj(An) + dj({e})− s and likewise for Bn we have

exp (dj(Bn) + dj({e})) + exp (dj(An)) ≥ exp (dj(An) + dj({e})) + exp (dj(Bn))

exp (dj(Bn)) (exp (dj({e}))− 1) ≥ exp (dj(An)) (exp (dj({e}))− 1)

dj(Bn) ≥ dj(An)

which is true for all An ⊆ Bn and elements e ∈ [K+] \Bn.
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For rnj = 1 we have the following similar inequality:

1 + exp (−dj(An))

1 + exp (−dj(An ∪ {e}))
≥ 1 + exp (−dj(Bn))

1 + exp (−dj(Bn ∪ {e}))

and after similar algebra as the rnj = 0 case, we obtain the same final inequality

dj(Bn) ≥ dj(An) (5.16)

which is again true for all An ⊆ Bn and elements e ∈ [K+] \ Bn. Therefore the

pILA likelihood, and in turn, the pILA joint probability is submodular for each

observation’s feature assignments. �

5.3 Leaky, Noisy-Or Binary Data Model

In this section, we consider the following model for N ×D binary data X:

Z|α, β ∼ IBP(α, β) (5.17)

A|θ1 ∼ H1(θ1) (5.18)

λd|θ2 ∼ H2(θ2) (5.19)

xnd|ε,Zn·,A, λd ∼ Bernoulli(1− ελZn·A·dd ) (5.20)

where Hi(θi), i ∈ {1, 2} are nonnegative distributions where the support of H2

must complement the parameter ε so that the product ελZn·A·dd takes values in a

subset of (0, 1), and A ∈ RK+×D
+ is a K+ ×D nonnegative matrix.

Again, to show the log-submodularity of this model, we only need to show

that the likelihood is a log-submodular function of each observation’s feature

assignments because the IBP prior is log submodular and the other probabilistic

components only depend on Z through the K+ selection. The log-likelihood is

N∑
n=1

D∑
d=1

[
xndlog

(
1− ελZn·A·dd

)
+ (1− xnd)log

(
ελZn·A·dd

)]
. (5.21)
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As a function of each observation’s feature assignment, the log-likelihood is

F(Zn·) =
D∑
d=1

[
xndlog

(
1− ελZn·A·dd

)
+ (1− xnd)log

(
ελZn·A·dd

)]
. (5.22)

Since nonnegative linear combinations of submodular functions are submodu-

lar, we can prove the submodularity of F(Zn·) by proving the submodularity of

Hd(Zn·) for an arbitrary but specific d where

F(Zn·) =
D∑
d=1

Hd(Zn·). (5.23)

Similar to the previous sections, we use the definition of submodularity and the

equivalent set function

Hd(Zn·) = Gd(An) = xndlog
(

1− ελ
∑
k∈An akd

d

)
+ (1− xnd)log

(
ελ

∑
k∈An akd

d

)
(5.24)

Again, we handle xnd = 0 and xnd = 1 case separately. For xnd = 0, the definition

of submodularity yields the following inequality for An ⊆ Bn ⊆ [K+] and element

e ∈ [K+] \Bn:

log

(
ελ

∑
k∈An∪{e} akd

d

ελ
∑
k∈An akd

d

)
≥ log

(
ελ

∑
k∈Bn∪{e} akd

ελ
∑
k∈Bn akd

d

)
(5.25)

log

(
ελaedd
ελaedd

)
≥ log

(
ελaedd
ελaedd

)
(5.26)

0 ≥ 0 (5.27)

which is true for all An ⊆ Bn and elements e ∈ [K+] \ Bn. For xnd = 1, we have



5.4 Inference Techniques 79

the following inequality:

log

(
1− ελ

∑
k∈An∪{e} akd

d

1− ελ
∑
k∈An akd

d

)
≥ log

(
1− ελ

∑
k∈Bn∪{e} akd

d

1− ελ
∑
k∈Bn akd

d

)
(5.28)

1− ελ
∑
k∈An∪{e} akd

d

1− ελ
∑
k∈An akd

d

≥ 1− ελ
∑
k∈Bn∪{e} akd

d

1− ελ
∑
k∈Bn akd

d

(5.29)

where cross-multiplying and cancelling the common terms yields

λ
∑
k∈Bn akd+aed

d + λ
∑
k∈An akd

d ≥ λ
∑
k∈An akd+aed

d + λ
∑
k∈Bn akd

d (5.30)

λ
∑
k∈Bn akd+aed

d − λ
∑
k∈Bn akd

d ≥ λ
∑
k∈An akd+aed

d − λ
∑
k∈An akd

d (5.31)

λ
∑
k∈Bn akd

d (λaedd − 1) ≥ λ
∑
k∈An akd

d (λaedd − 1) (5.32)

λ
∑
k∈Bn akd

d ≥ λ
∑
k∈An akd

d (5.33)∑
k∈Bn

akd ≥
∑
k∈An

akd (5.34)

which is true for all An ⊆ Bn and elements e ∈ [K+] \ Bn. Therefore the leaky,

noisy-or model is submodular for each observation’s feature assignment. �

5.4 Inference Techniques

In Chapter 4, we performed inference on a linear-Gaussian IBP model by itera-

tively using submodular maximization to obtain the latent feature assignments

and variational updates to maintain the model parameters via the maximization-

expectation (ME) framework. The ME framework can be applied to more com-

plicated (non-conjugate) feature models as well, e.g. pILA, but the variational

updates for the model parameters will not have a closed-form solution.

Non-conjugate variational inference is a well-studied topic and several meth-

ods could be applied to a given model. For instance, Wang and Blei [2012b]

proposed “Laplace” and “delta-method” variational inference algorithms that

could be applicable to models with any exponential-family likelihood: the Laplace

method effectively places a variational Gaussian distribution at the MAP estimate

of the model parameters while the delta-method optimizes a Taylor expansion of



5.4 Inference Techniques 80

the variational lower bound. Other nonconjugate variational methods that could

be used in an ME setting include those proposed in: Knowles and Minka [2011],

Gershman et al. [2012], Honkela and Valpola [2004], and Ahmed and Xing [2007].

A simpler approach as ME inference, is to compute MAP estimates of the

model parameters as well—the so-called “maximization-maximization” or “iterated-

conditional-modes” technique. This method can lead to simple optimization rou-

tines for the model parameters in addition to the submodular optimization for

the feature assignments. For instance, with the pILA model, if we choose a log-

normal prior on the affinity weights then updating each weight can be phrased

as a convex minimization.1

Another simplifying possibility, would be to form objective functions by taking

0-variance asymptotic limits of the probabilistic model. Broderick et al. [2013a]

took the 0-variance asymptotic limit of the linear-Gaussian IBP model discussed

in Chapter 4. From this limit, the authors derived a simple optimization scheme

where each individual feature znk was optimized independently and the model

parameters were set to their expected value conditioned on the feature assign-

ments, see §4.8. By using a nonnegative prior on the model parameters, this same

0-variance asymptotic limit could be used to obtain an objective function that is

submodular for each observation’s feature assignments. We conjecture that we

could obtain submodular 0-variance asymptotic objective functions for a number

of latent feature models but leave this investigation for future research.

1We state this result without proof as we are currently exploring this model and will for-
malize these results in a future publication.



Chapter 6

Conclusions and Future Work

This thesis established a novel connection between the field of Bayesian non-

parametrics and submodular optimization. We showed that the combinatorial

structures that arise from nonparametric feature allocation models often demon-

strate submodularity. This observation allowed us to draw upon the theoretical

benefits and wealth of methodology developed for submodular optimization in or-

der to perform MAP inference with nonparametric feature allocation models. For

the linear-Gaussian feature allocation model, we showed that submodular max-

imization can lead to fast MAP estimates of the feature allocation that capture

the structure of held-out data as well as the best sampling/variational inference

techniques. Our methodology (the MEIBP algorithm) and experimental results

demonstrated that it is possible to perform inference with large data and highly

combinatorial Bayesian nonparametric models, e.g. we performed inference for

a latent feature allocation model using a dataset with 108 total observations in

circa ten hours.

While this thesis explicitly demonstrated the utility of submodular optimiza-

tion in Bayesian nonparametric models, it has also implicitly provided a new

application domain and motivation for researchers studying submodular opti-

mization. Indeed, the specific flavor of submodular optimization studied in this

thesis—unconstrained submodular maximization—is currently a very active area

of research in submodular optimization. Buchbinder et al. [2012] recently showed

that a linear stochastic algorithm can obtain an expected (1/2)-approximation for

unconstrained submodular maximization problems, and Iyer et al. [2013] showed a
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general unifying framework for submodular optimization problems that subsumes

the work of Buchbinder et al. [2012]. As demonstrated in this thesis, advances

in the field of submodular optimization will benefit the Bayesian nonparametrics

community. For instance, whether a deterministic algorithm can obtain a (1/2)-

approximation for unconstrained submodular problems is an open question, and

a positive result would provide a possibly improved MEIBP algorithm.

There are several directions for future research based upon the contributions

from this thesis:

• design and implement submodular-based MAP inference for additional fea-

ture allocation models: Certain feature allocation models, such as the Infi-

nite Latent Attribute Model (see §5.2), exhibit submodularity and can not

scale to sizeable datasets via sampling-based inference, e.g. datasets with

more than one thousand observations. One key direction for future research

is to design and implement submodular-maximization-based inference algo-

rithms so that these models can be used on large datasets.

• generalization of submodularity results: The distribution specified by the

IBP can be obtained by integrating a beta process random measure with

respect to a Bernoulli process de Finetti mixing measure [Thibaux and

Jordan, 2007]. An interesting question is whether the submodularity results

from this thesis can be stated in terms of the underlying random measures,

e.g. whether the submodularity result can take a more general form based

on properties of the beta-Bernoulli process.

• find submodularity in other nonparametric or deep models: There are many

discrete Bayesian nonparametric processes, such as the Dirichlet process and

beta negative binomial process, and an interesting area for future research

will be to generalize our results in order to phrase inference with models

that embed these processes as submodular optimization problems.

• characterize where unbounded nonparametric models are useful: As we saw

in §4.9, the the bounded MEIBP and variational approaches, truncated

samplers, and parametric BNMF model performed as-well or better than

the unbounded samplers in several experiments. Formally exploring and
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characterizing where parametric, bounded, and unbounded models succeed

is an interesting, and understudied, question in Bayesian nonparametrics.



Appendix A

A.1 Truncated Gaussian Properties

In the §4.1 we examined a truncated Gaussian of the form:

TN(µ̃kd, σ̃
2
kd) =

2

erfc
(
− µ̃kd
σ̃kd
√

2

)N(µ̃kd, σ̃
2
kd) (A.1)

with N representing a Gaussian distribution. The first two moments of TN(µ̃kd, σ̃
2
kd)

are:

E [akd] = µ̃kd + σ̃kd

√
2/π

erfcx (℘kd)
(A.2)

E
[
a2
kd

]
= µ̃2

kd + σ̃2
kd + σ̃kdµ̃kd

√
2/π

erfcx (℘kd)
(A.3)

with ℘kd = − µ̃kd
σ̃kd
√

2
and erfcx (y) = ey

2
(1 − erf(y)) representing the scaled com-

plementary error function. The entropy is

H(q(akd)) =
1

2
ln
πeσ̃2

kd

2
+ ln erfc

(
− µ̃kd

σ̃kd
√

2

)
+
µ̃kd
σ̃kd

√
1

2π

(
erfcx

(
− µ̃kd

σ̃kd
√

2

))−1

. (A.4)
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A.2 Submodular Joint log-IBP Distribution Counter

Example.

In this section we show that the log of the joint IBP distribution is not jointly

submodular. Intuitively, this is because the IBP distribution favors assigning

either a large or small number of observations to each feature, which does not

coincide with the “diminishing returns” characteristic of submodular functions.

Here’s a concrete counter example using the single parameter IBP with shifted

equivalence classes:

log (P ([Z]shift)) = log

(
αK+

K+!
e−αHN

)
+

K+∑
k=1

log

(
(N −mk)!(mk − 1)!

N !

)
,

where α > 0 is a parameters, K+ is the number of active latent features, HN

is the N th harmonic number, N is the number of observations, and mk is the

number of observations that are assigned the kth feature.

Note: defining log (P ([Z]shift)) as a set function is a bit more tortuous than the

conditional case since we are working with a binary matrix instead of a binary

vector, so our set function is defined over a product space N × N, where N are

the natural numbers. Fortuneately, we can work directly with the binary matrix

Z, while keeping in mind that we are actually working with an equivalent set

defined over a product space. For instance, if a binary matrix has the third

and fifth feature active for the sixth observarion, the equivalent set defined over

the product space would be: {(6, 3), (6, 5)}. The subsets of this matrix are:

{(6, 3), (6, 5)} or {(6, 3)} or {(6, 5)} or {}.

For this counter example let K+ = 1 and examine binary matrix ZA where

set(ZA) = A = {(1, 1)} which is a subset of ZB where

set(ZB) = B = {(1, 1), (1, 2), . . . , (1, N − 1)}.
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If log (P ([Z]shift)) is submodular then

log
(
P ([ZA∪(1,N)])

)
− log (P ([ZA])) ≥ log

(
P ([ZB∪(1,N)])

)
− log (P ([ZB]))

where m1 = 2 for A∪(1, N), m1 = 1 for A, m1 = N for B∪(1, N), and m1 = N−1

for B. Since K+ does not change, all terms in the IBP definition cancel except

the log ((N −mk)!(mk − 1)!) terms, yielding the inequality:

log ((N − 2)!(2− 1)!)− log ((N − 1)!(1− 1)!)

≥ log ((N −N)!(N − 1)!)− log ((N − (N − 1))!((N − 1)− 1)!)

which simplifies to:

−log (N − 1) ≥ log (N − 1)

which is false for all N > 2 and log (P ([Z])). As a result, the joint IBP distribu-

tion is not submodular. �

A.3 Nonnegative Linear-Gaussian Derivations

A.3.1 Evidence Lower Bound

Given the nonnegative linear Gaussian model described in §4.1, the evidence lower

bound is

L = Eq[log p(X,A,Z|θ)] +H[q] (A.5)

= Eq[log p(X|Z,A, σ2
X)] + Eq[log p(A|σ2

A)] + Eq[log p([Z]|α)] +H[q(A)] +H[q(Z)].

(A.6)

Since we use q(Z) = δ(Z − Z∗), all Eq[·] ≡ Eq(A)q(Z) ≡ Eq(A) and all Z

occurrences go to Z∗. Therefore we use the shorthand E[·] to indicate Eq(A).
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As mentioned in §4.1, we overload our notation and let Z ≡ Z∗ for the vari-

ational lower bound because throughout this work we examine the variational

lower bound as the objective function to find Z∗. We only use the actual value

of Z∗ when evaluating the variational lower bound, i.e. to test the inference im-

plementation.

For the Gaussian likelihood component, we have

E[log p(Xn·|Z,A, σ2
X)]

= E[−D
2

log
(
2πσ2

X

)
− 1

2σ2
X

(Xn· −Zn·A)(Xn· −Zn·A)T ]

= −D
2

log
(
2πσ2

X

)
− 1

2σ2
X

(
Xn·X

T
n· − 2Zn·E[A]XT

n· + E[Zn·AA
TZn·]

)
where

E[Zn·AA
TZT

n·] =

E
[ D∑
d=1

K∑
k=1

z2
nka

2
kd +

∑
k′:k′ 6=k

znkznk′akdak′d

]
=

D∑
d=1

K∑
k=1

znkE[a2
kd] +

∑
k′:k′ 6=k

znkznk′E[akd]E[ak′d]

=
K∑
k=1

znk

D∑
d=1

E[a2
kd] +

K∑
k=1

∑
k′:k′ 6=k

znkznk′
D∑
d=1

E[akd]E[ak′d]

=
K∑
k=1

znk

D∑
d=1

E[a2
kd] +Zn·ΦΦTZT

n· −
K∑
k=1

znk

D∑
d=1

E[akd]
2

= Zn·ΦΦTZT
n· +

K∑
k=1

znk

D∑
d=1

[
E[a2

kd]− E[akd]
2
]

where Φ is a matrix with entries φkd = E [akd]. Combining this result with all
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likelihood terms yields

E[log p(Xn·|Z,A, σ2
X)]

=− 1

2σ2
X

(
Xn·X

T
n· − 2Zn·ΦX

T
n· +Zn·ΦΦTZT

n· +
K∑
k=1

znk

D∑
d=1

[
E[a2

kd]− E[akd]
2
])

− D

2
log
(
2πσ2

X

)
=

1

σ2
X

(
−1

2
Zn·ΦΦTZT

n· +Zn·ξ
T
n· −

1

2
Xn·X

T
n·

)
− D

2
log
(
2πσ2

X

)
with

ξnk = Φk·X
T
n· +

1

2

D∑
d=1

[
E[akd]

2 − E[a2
kd]
]
. (A.7)

The variational lower bound component for the zero-mean, truncated Gaus-

sian latent factors is:

Eq[log p(akd|α)] = E
[
log (2)− 1

2
log
(
2πσ2

A

)
− 1

2σ2
A

a2
kd

]
= log (2)− 1

2
log
(
2πσ2

A

)
− 1

2σ2
A

E
[
a2
kd

]
The variational lower bound component for the IBP prior is simply the log of

the prior:

Eq[log p(Z|α)] = K+log (α)− log (K+!)− αHN +
K+∑
k=1

log

(
(N −mk)!(mk − 1)!

N !

)

The entropy for latent factor variational distribution is the entropy for a trun-
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cated Gaussian:

H(q(akd)) =
1

2
log

(
πeσ̃2

kd

2

)
+ log

(
erfc

(
− µ̃kd

σ̃kd
√

2

))
+
µ̃kd
σ̃kd

√
1

2π

(
erfcx

(
− µ̃kd

σ̃kd
√

2

))−1

.

The entropy for the latent feature assignment, H(q(Z)) = H(δ(Z − Z∗)) is

zero since it is a point assignment for a discrete distribution.

Combining the above terms results in the following variational lower bound:

L =
N∑
n=1

[ 1

σ2
X

(
−1

2
Zn·ΦΦTZT

n· +Zn·ξ
T
n· −

1

2
Xn·X

T
n·

)
− D

2
log
(
2πσ2

X

)]
+

D∑
d=1

K∑
k=1

[
log (2)− 1

2
log
(
2πσ2

A

)
− 1

2σ2
A

E
[
a2
kd

]]
+K+log (α)− log (K+!)− αHN +

K+∑
k=1

log

(
(N −mk)!(mk − 1)!

N !

)

+
D∑
d=1

K∑
k=1

H[q(akd)]

Some algebraic rearrangements yield

L =
1

σ2
X

N∑
n=1

[
−1

2
Zn·ΦΦTZT

n· +Zn·ξ
T
n·

]
− log (K+!)

+
K+∑
k=1

log

(
(N −mk)!(mk − 1)!

N !

)
+

K∑
k=1

ηk

− 1

2σX
trace

(
XXT

)
− ND

2
log
(
2πσ2

X

)
− αHN
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with

ηk =
1

2

D∑
d=1

[
−log

(
πσ2

A

2α2/D

)
− E[a2

kd]

σ2
A

+ 2H(q(akd))
]
,

which is equivalent to the evidence lower bound presented in §4.1, where

− 1

2σX
trace

(
XXT

)
− ND

2
log
(
2πσ2

X

)
− αHN

is replaced with “constant.”1

A.3.2 Hyperparameter Inference

In the inference procedure discussed in Chapter 4, text we assumed the hyper-

parameters θ = {σX , σA, α} were known (i.e. estimated from the data). Placing

conjugate gamma hyperpriors on these parameters allows for a straightforward

extension in which we infer their values. Formally, let

p(τX) = Gamma(τX ; aX , bX) (A.8)

p(τA) = Gamma(τA; aA, bA) (A.9)

p(α) = Gamma(α; aα, bα) (A.10)

where τ represents the precision, equivalent to the inverse variance 1
σ2 , for the vari-

ance parameter indicated in the subscript. Update equations for the variational

distributions follow from standard update equations for variational inference in

1As discussed in Appendix A.3.2, performing variational inference on the hyperparame-
ters would reinsert these three terms into the variational lower bound, i.e. they would not be
constant. However, these terms would still not be included in the Z optimization.
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exponential families, cf. Attias [2000], and yield:

q(τX) = Gamma(ãX , b̃X) (A.11)

q(τA) = Gamma(ãA, b̃A) (A.12)

q(α) = Gamma(ãα, b̃α) (A.13)

with variance updates

ãA = aA +
KD

2
(A.14)

b̃A = bA +
1

2

K+∑
k=1

D∑
d=1

E
[
a2
kd

]
(A.15)

and

ãX = aX +
ND

2
(A.16)

b̃X = bX +
1

2

N∑
n=1

D∑
d=1

[
x2
nd +

K+∑
k=1

[
E
[
a2
kd

]
znk (A.17)

− 2E[akd]znkxnd + 2

K+∑
k′=k+1

znkznk′akdak′d

]]
(A.18)

and q(α) updates

ãα = aα +K+ (A.19)

b̃α = bα +HN . (A.20)

MEIBP inference is carried out exactly as discussed in Chapter 4 except all in-

stances of σX , σA, and α are replaced with the expectations from their respective

variational distribution. Note that some of the “const” terms would no longer

be constant, but these terms would not affect the Z optimization results. Fur-

thermore the variational lower bound also has three additional entropy terms for
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gamma distributions, one for each hyperparameter.

A.3.3 Variational Updates for q(A)

Following standard mean field variational Bayes updates [Attias, 2000; Ghahra-

mani and Beal, 2001], we can compute the variational updates as follows:

log (q(akd)) = EZ,A−kd [log (p(X,Z,A|Θ))] + const

= EZ,A−kd [log (p(X|Z,A,Θ))] + EZ,A−kd [log (p(A|Θ))] + const

= EA−kd [log (p(X|Z,A,Θ))] + EA−kd [log (p(A|Θ))] + const

= EA−kd

[
N∑
n=1

− 1

2σ2
X

(Xn· −Zn·A)(Xn· −Zn·A)T

]
− a2

kd

2σ2
A

+ const

= − 1

2σ2
X

N∑
n=1

EA−kd

[
Zn·AA

TZn· − 2Zn·AX
T
n·
]
− a2

kd

2σ2
A

+ const

= − 1

2σ2
X

N∑
n=1

[
EA−kd

[
Zn·AA

TZn·
]
− 2akdznkxnd

]
− a2

kd

2σ2
A

+ const

= − 1

2σ2
X

N∑
n=1

EA−kd

a2
kdznk + akdznk2

∑
k′ 6=k

znk′ak′d

− 2akdznkxnd

− a2
kd

2σ2
A

+ const

= − 1

2σ2
X

N∑
n=1

a2
kdznk + akdznk2

∑
k′ 6=k

znk′E [ak′d]− 2akdznkxnd

− a2
kd

2σ2
A

+ const

= − 1

2σ2
X

a2
kd(mk +

σ2
X

σ2
A

) + 2akd

N∑
n=1

znk∑
k′ 6=k

znk′E [ak′d]− znkxnd

+ const

= −
mk +

σ2
X

σ2
A

2σ2
X

N∑
n=1

a2
kd +

2akd

mk +
σ2
X

σ2
A

N∑
n=1

znk

∑
k′ 6=k

znk′E [ak′d]− xnd

+ const

= −
mk +

σ2
X

σ2
A

2σ2
X

N∑
n=1

a2
kd − 2

akd

mk +
σ2
X

σ2
A

N∑
n=1

znk

xnd −∑
k′ 6=k

znk′E [ak′d]

+ const
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which shows that q(akd) is a truncated Gaussian distribution with

µ̃kd =
1

mk +
σ2
X

σ2
A

N∑
n=1

znk

xnd −∑
k′ 6=k

znk′E [ak′d]

 (A.21)

σ̃2
kd =

σ2
X

mk +
σ2
X

σ2
A

(A.22)

A.3.4 Evidence as a function of Zn·

As shown in Chapter 4, we obtain a submodular objective function for each Zn·,

n ∈ {1, . . . , N} by examining the evidence as a function of Zn· while holding

constant all n′ ∈ {1, . . . , N} \ n. The evidence is

1

σ2
X

N∑
n=1

[
−1

2
Zn·ΦΦTZT

n· +Zn·ξ
T
n·

]
− log (K+!)

+
K+∑
k=1

[
log

(
(N −mk)!(mk − 1)!

N !

)
+ ηk

]
+ const (A.23)

ξnk = Φk·X
T
n· +

1

2

D∑
d=1

[
E[akd]

2 − E[a2
kd]
]

(A.24)

ηk =
D∑
d=1

− log
(

πσ2
A

2α2/D

)
2

− E[a2
kd]

2σ2
A

+H(q(akd))

 , (A.25)

which nearly factorizes over the Zn· because the likelihood component and parts

of the prior components naturally fit into a quadratic function ofZn·. The log K+!

and ηk only couple the rows of Z when K+ changes, while the log-factorial term

couples the rows of Z through the sums of the columns. Both of these terms only

depend on statistics of Z (the mk values and K+), not the Z matrix itself, e.g.

permuting the rows of Z would not affect these terms. Furthermore, log (K+)

and ηk have no N dependence and become insignificant as N increases. These

observations, in conjunction with the MEIBP performance in the experimental

section of Chapter 4, indicate that sequentially optimizing Eq. A.23 for Zn· is a
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reasonable surrogate for optimizing Z.

Here we explicitly decompose Eq. A.23 to show its Zn· dependency. Decom-

posing log
(

(N−mk)!(mk−1)!
N !

)
is straightforward if we first define the function:

ν(znk) =

log
(
(N −mk\n − znk)!(mk\n + znk − 1)!/N !

)
0, if mk\n = 0 and znk = 0.

(A.26)

where the “\n” subscript indicates the variable with the nth row removed from

Z. For a given n we have:

K+∑
k=1

ν(znk) =

K+∑
k=1

log ((N −mk)!(mk − 1)!/N !)

=

K+∑
k=1

znk (ν(znk = 1)− ν(znk = 0))

+ ν(znk = 0), (A.27)

which makes the Zn· dependency explicit and lets us add ν(znk = 1)−ν(znk = 0)

into the inner-product term, ξn·, and place ν(znk = 0) into a constant term. We

can incorporate ηk into the inner-product term in a similar manner for a given

n ∈ {1, . . . , N} :

K+∑
k=1

ηk =
∑

k:mk\n>0

ηk +

K+∑
k=1

1{mk\n=0}znkηk, (A.28)

where the first term does not depend on Zn· and is added to the constant term,

while the second term is added to the inner-product term. Finally, for a given

n ∈ {1, . . . , N} the log (K!) term becomes

log (K+!) = log

((
K+\n +

K+∑
k=1

[
1{mk\n=0}znk

])
!

)
, (A.29)
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where 1{·} is the indicator function. As stated in Chapter 4, combining the above

terms yields the following submodular objective function for n = 1, . . . , N :

F(Zn·) =− 1

2σ2
X

Zn·ΦΦTZT
n· +Zn·ω

T
n· + const

− log

((
K+\n +

K+∑
k=1

[
1{mk\n=0}znk

])
!

)
(A.30)

Φk· = (E [ak1] , . . . ,E [akD]) (A.31)

ωnk =
1

σ2
X

(
Φk·X

T
n· +

1

2

D∑
d=1

[
E[akd]

2 − E[a2
kd]
])

+ ν(znk = 1)− ν(znk = 0) + 1{mk\n=0}ηk, (A.32)

1{·} is the indicator function, and the subscript “ \ n” is the value of the given

variable after removing the nth row from Z.

A.3.5 Predictive Likelihood Estimates

For the experiments in §4.9, we estimated the predictive likelihood for held-out

dimensions of a given observation. For held-out datum x′nd, the predictive likeli-

hood is:

p(x′nd|X) =
∑
Z

∫
A

p(x′nd|Z,A)p(Z,A|X) (A.33)

where the hyperparameters are implicit.

A.3.5.1 Predictive Likelihood Estimates for Gibbs Sampling

For Gibbs samplers, we can compute unbiased estimates of the predictive likeli-

hood as

p(x′nd|X) ≈ 1

L

L∑
l=1

p(x′nd|Z l,Al) (A.34)



A.3 Nonnegative Linear-Gaussian Derivations 96

where l indexes the samples from each of L Gibbs sampling rounds where Z l,Al

are sampled from the posterior.

A.3.5.2 Predictive Likelihood Estimates for Variational Inference

For the variational methods, we use the variational distributions as proposal

distributions for importance sampling from the posterior. This yields a predictive

likelihood estimate similar to the Gibbs sampling estimate:

p(x′nd|X) =
∑
Z

∫
A

p(x′nd|Z,A)p(Z,A|X) (A.35)

≈
L∑
l=1

p(x′nd|Z l,Al)wl (A.36)

with Z l ∼ q(Z) and Al ∼ q(A) for l ∈ [L], and the sample weights were

wl =

p(X|Zl,Al)p([Zl])p(Al)

q(Al)q(Zl)∑L
l=1

p(X|Zl,Al)p([Zl])p(Al)

q(Al)q(Zl)

. (A.37)

Unlike the Gibbs sampling estimate, however, this estimate is a ratio of two

estimates and is therefore biased. Nevertheless, as discussed in §3.3.2 of Robert

and Casella [2004], the bias is small and the estimator converges to the true

predictive likelihood as L → ∞. All estimates were computed using sampling

importance resampling—see §27.6 of Barber [2012].

A.3.5.3 Predictive Likelihood Estimates for Maximization-Expectation

and MAP Inference

The predictive likelihood estimate for maximization-expectation inference is the

same as the predictive likelihood estimates for variational inference except the
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proposal distribution q(Z) was a delta function at the current MAP estimate.

p(x′nd|X) =
∑
Z

∫
A

p(x′nd|Z,A)p(Z,A|X) (A.38)

≈
L∑
l=1

p(x′nd|Z l,Al)wl (A.39)

where the sample weights were

wl =

p(X|Z∗,Al)p(Al)

q(Al)∑L
l=1

p(X|Z∗,Al)p(Al)

q(Al)

, (A.40)

which are the same as the weights for the variational estimate except the Z vari-

ational factors and priors cancel out when Z is fixed. This is a biased estimate

for two reasons: (1) like the variational case, this estimate is a ratio of two esti-

mates, (2) the support of q(Z)q(A) does not include the support of p(Z,A|X).

As previously discussed, reason (1) is not particularly bothersome, however, rea-

son (2) can make this estimate arbitrarily biased. Because of reason (2), we also

include L2 performance on held-out dimensions as an additional evaluation crite-

rion. The L2 and predictive likelihood rankings were similar for all experiments

and indicate that the predictive likelihood bias from the MAP estimates did not

overly affect the results. Furthermore, when using the MAP Z values to initialize

the sampler, the unbiased predictive likelihood from the sampler was consistent

with the maximization-expectation estimates.

The predictive likelihood estimate for the fully MAP approach was the same

as the maximization-expectation approach except q(A) was also set to the delta

function at the current MAP estimate of A. In this case, the sampling weights
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were

wl =

p(X|Zl,Al)p([Zl])p(Al)

q(Al)q(Zl)∑L
l=1

p(X|Zl,Al)p([Zl])p(Al)

q(Al)q(Zl)

(A.41)

=
p(X|Z∗,A∗)∑L
l=1 p(X|Z∗,A∗)

(A.42)

which completely cancel and yield the following estimate of the predictive likeli-

hood

p(x′nd|X) ≈ p(x′nd|Z∗,A∗). (A.43)

As in the maximization-expectation case, this estimate can be arbitrarily biased,

so we also include L2 performance on held-out dimensions as an additional eval-

uation criterion.

A.4 Feige et al. [2011] Local Search Algorithm:

Runtime Discussion

The runtime of the deterministic local search submodular maximization algorithm

proposed in Feige et al. [2011] is O(1
ε
K3log (K)) for a ground set of size K and

some parameter ε. We can see that this is a loose upper bound by working

through the short derivation of its complexity. Specifically, the submodularity

inequality states that

F({w})− F (∅) ≥ F(A ∪ {s})− F(A) (A.44)

F({w}) ≥ F(A ∪ {s})− F(A) (A.45)
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for all sets A and singletons s, where w is the singleton that maximizes F. From

this inequality we have

KF({w}) ≥ F(A), (A.46)

which states that KF({w}) is a global upper bound on any submodular function.

The ls-algorithm only adds elements if they improve the objective function by a

relative factor of 1 + ε
K2 , we know that after m add/remove operations to test set

S we have the inequality

F(S) ≥
(

1 +
ε

K2

)m
F({w}). (A.47)

By transitivity we have

K ≥ (1 +
ε

K2
)m ≥ e

m ε
K2+ε , (A.48)

where the final inequality follows from the well-known log-inequality log (1 + x) ≥
1

1+ 1
x

. For an upper bound, we set

K = e
m ε
K2+ε , (A.49)

which leads to

m =

(
K2

ε
+ 1

)
log (K) . (A.50)

This bounds the number of add/remove steps at

O(
1

ε
K2log (K)). (A.51)

Each add/remove step must also find the singleton that most improves the ob-

jective function, taking O(K) function queries, yielding a total O(1
ε
K3log (K))
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number of add/remove queries to the submodular function. This derivation shows

that the K3log (K) upper bound will only occur if all add/remove operations in-

crease the objective function by a factor of exactly (1+ ε
K2 ). If we instead require

each add/remove operation to increase the objective function by at least a factor

of (1+ ε
K

), then the above derivation yields a total complexity of O(1
ε
K2log (K)).1

The actual runtime of the ls-algorithm is problem specific, but in our use cases,

the empirical complexity is linear for small K (roughly K < 100) and on the

order of Klog (K) for larger K.

1This changes the optimality guarantee from 1
3 (1− ε

K )OPT to 1
3 (1− ε)OPT.
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